
Thesis for the degree of Master of Science

Generic type-safe diff and
patch for families of datatypes

Eelco Lempsink

August 31, 2009

INF/SCR-08-89

Center for Software Technology
Dept. of Information and Computing Sciences
Universiteit Utrecht
Utrecht, The Netherlands

Daily supervisor: Andres Löh

Second supervisor: Sean Leather

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Approach . 2
1.3 Overview . 3
1.4 Contributions . 4

2 Lists 5
2.1 Longest common subsequence 5
2.2 Edit script . 6
2.3 Diffing . 7
2.4 Patching . 8
2.5 Discussion . 9

3 Trees 11
3.1 Maximum Common Embedded Subtree 12
3.2 Edit script . 12

3.2.1 Datatype . 12
3.2.2 Stack . 13
3.2.3 Example . 13

3.3 Diffing . 14
3.4 Patching . 15
3.5 Discussion . 16

4 Universe 17
4.1 Encoding . 17
4.2 Interpretation . 19

4.2.1 Environments . 19
4.2.2 Interpretation of families 20
4.2.3 Interpretation module . 23

4.3 Discussion . 23

5 Families 25
5.1 Example . 25
5.2 Edit script . 27
5.3 Patching . 29

5.3.1 Inserting . 29
5.3.2 Deleting . 30

5.4 Diffing . 31

i

Contents Contents

5.5 Discussion . 32

6 Memoization 33
6.1 Lists . 33
6.2 Trees . 34

6.2.1 Table datatype . 34
6.2.2 Diffing . 36

6.3 Discussion . 38

7 Extension: Constants 39
7.1 Codes . 39
7.2 Interpretation . 40
7.3 Edit script . 41
7.4 Patching . 43
7.5 Diffing . 44
7.6 Discussion . 45

8 Extension: Compression 46
8.1 Example . 46
8.2 Edit Script . 47
8.3 Compressing . 47
8.4 Patching and diffing . 48
8.5 Discussion . 48

9 Haskell implementation 50
9.1 Universe . 50
9.2 Edit script . 53
9.3 Patching . 54
9.4 Diffing . 55
9.5 Compression . 58
9.6 Memoization . 58

9.6.1 Table datatype . 58
9.6.2 Diffing . 59

9.7 Discussion . 61

10 Conclusion 62
10.1 Related and future work . 62
10.2 Acknowledgements . 63

A Agda syntax for Haskellites 64
A.1 UTF-8 . 64
A.2 Colons . 64
A.3 Implicit arguments . 65
A.4 Kinds and named type arguments 65
A.5 Underscores: infix, mixfix . 65
A.6 Constructors . 66
A.7 Dependent types . 66
A.8 with syntax . 66

A.8.1 ... 67
A.9 Fin . 67

ii

Contents Contents

B Example datatype encoding 68
B.1 Family . 68
B.2 Codes . 68

B.2.1 Type indices . 68
B.2.2 Constructor encodings . 69
B.2.3 Type encodings . 69
B.2.4 Family encoding . 69

B.3 Interpretation . 69
B.3.1 Types . 69
B.3.2 Constructor indices . 70
B.3.3 Constructor functions . 70

C Haskell example: JSON 71
C.1 Family GADT . 71
C.2 Family instance . 72
C.3 Type instances . 73
C.4 Example . 74

Bibliography 75

iii

Chapter 1

Introduction

1.1 Motivation

The UNIX diff command finds the difference between two files and produces
an edit script, describing the steps to get from the source file to the target file.
The produced edit script can be used by the patch command to transform
another similar source file to a file similar to the target file.

The ideas behind diff and patch are widely used, for example in version
control systems [1, 2, 3, 4, 5]. A version control system keeps track of previous
versions of files and is often used in a collaborative setting, where several people
work on the same files. For the files that are managed, many current systems
only make the distinction between plain text and binary content, even if the
content they are managing has a structured interpretation, such as an XML file,
a LATEX document or source code.

In the domain of editors the merit of structured editors is often obvious. For
example, when editing a document with the OpenOffice.org Writer, which uses
XML as the underlying representation of documents, OpenOffice.org guarantees
the XML structure of a document always stays intact.

Using plain text (e.g., line-based) edit scripts as produced by UNIX’s diff to
represent changes in files that have a structured representation is unsatisfying
for three reasons: First, it is not always a clear representation to communicate
what has changed to a user. For example, a small structural change might
look like a many big changes when represented as a line-based edit script.
Second, representing edit scripts – how to get from one version to another – for
structured data as plain text is very fragile. If the script is slightly modified,
applying it to a document might result in a file that does not contain a valid
structure anymore. For example, the file does not parse as XML anymore. Third,
even if the edit script does guarantee not to break the structure, the structure
may still be invalid. In the case of XML, it may no longer adhere to its schema.

For XML files, there are several different algorithms and tools available that
use of the structure of XML [23]. Even word processors, such as that offered
by OpenOffice.org, have their own solutions for displaying and keeping track
of differences between versions. However, for programming code and other
structured documents – for which version control systems are often used – there
is no general solution available.

1

Introduction 1.2 Approach

1.2 Approach

We call the operation of calculating the edit script ‘diffing’ and applying an edit
script ‘patching’.

Our approach is to define a generic diffing and patching algorithm that
works with type-safe edit scripts. Type-safe means that we make use of a type
system to ensure the edit scripts are valid and do not break the structure when
applied.

We use the dependently typed functional language Agda [20] for our code.
Agda is well-suited for generic programming [22] and offers us a powerful type
system. Its syntax is similar to Haskell. For the reader familiar with Haskell we
offer Appendix A which has an overview of the major syntactic differences. To
use our work on real-life we also ‘ported’ the algorithms to Haskell.

As an example, we look at the following two files and compare the output
of UNIX’s diff to the edit script from our solution.

if 2 < 0 then 0
else 1

if 1 < 0
then 2
else 1

Using UNIX’s diff command to find the difference between the two files,
we get the following output:

@@ -1,2 +1,3 @@
-if 2 < 0 then 0
- else 1
+if 1 < 0
+ then 2
+ else 1

If we look at the underlying structural difference between the two files we
see that only the left side of the comparison in the if has changed and the result
of the then branch. All other changes are merely formatting differences.

We parse the file into simple datatype representing the abstract syntax.

data Exp where
If :: Exp→ Exp→ Exp→ Exp
Val :: Num→ Exp
LT :: Num→ Num→ Exp

Using this datatype (and the Num datatype, which is not shown), our diffing
algorithm produces a (Haskell) value of the edit script that looks like this:

Cpy ‘If’
$ Cpy ‘LT’
$ Ins ‘1’
$ Del ‘2’
$ Cpy ‘0’
$ Cpy ‘Val’
$ Cpy ‘1’

2

Introduction 1.3 Overview

$ Cpy ‘Val’
$ Ins ‘2’
$ Del ‘0’
$ End

While the edit script above may appear longer or more complex than the
line-based edit script, it is actually more precise. Instead of deleting and adding
lines with duplicated strings, we delete and copy syntax. It is important to note
the amount of Cpy operations. Almost everything can be copied, only the actual
numbers are replaced using Del and Ins.

1.3 Overview

To arrive at generic, type-safe diffing and patching for families of datatypes we
first look at simple diffing and patching algorithms.

We start, in Chapter 2, with diffing and patching for lists. Our definitions
are a simplification and generalization of UNIX’s diff and patch. We look at
how to define an edit script and a naïve algorithm. The definitions we show in
Chapter 2 form the basis for further chapters.

Almost all datatypes can be represented as trees, the constructors forming
the labels for the tree nodes and the arguments of the constructors defining
how many subtrees a node has. Therefore, we define diffing and patching for
labeled rose-trees in Chapter 3. We look at how the definitions have to change
compared to the diffing and patching on lists.

When using the trees from Chapter 3 to represent datatypes, we find out we
need more information on the types of the (constructor) nodes to define an edit
script that satisfies the property we are after: an edit script that can cause an
ill-typed value should be itself ill-typed.

In Chapter 4 we turn to datatype-generic programming, a technique com-
monly used to define generic functions, e.g., for pretty-printing, parsing, equal-
ity testing and ordered comparison. We define a universe to encode our types
and use generic programming to define type-safe diffing and patching for
datatypes.

The universe we defined in Chapter 4 we use in Chapter 5 to define a
generic, type-safe implementation of diffing and patching. The diffing and
patching algorithms do not have to change much to make the implementation
type-safe. We change the definition of the edit script using dependently typed
programming to guarantee that invalid edit scripts are ill-typed.

While chapter 5 is interesting for its theory, the algorithm is a too simplistic
and inefficient to be useful in practice. The remaining chapters work towards
making the solution more usable.

In Chapter 6 we define a memoized version of our algorithm, significantly
improving on the exponential behaviour of the solution of Chapter 5. Creating
a memoized version of the more simple, ‘untyped’ algorithms from Chapter 2
and 3 is straightforward. Because we have added dependent types to our edit
script, the problem becomes much harder. We need to define our own typed
memoization table in which to save subsolutions to subproblems.

The last step in making type-safe, generic diffing and patching usable in
practice is redefining our solution in Haskell in Chapter 9. Using Haskell allows

3

Introduction 1.4 Contributions

users to use a powerful, mature, general-purpose programming language and
use existing libraries to represent the structure of files, e.g., JSON abstract syntax.

To make the algorithms usable in practice, we define an efficient version in
Chapter 6, two extensions in Chapter 8 and Chapter 7, and a Haskell implemen-
tation in Chapter 9. We (need to) use quiet a few language extensions to do the
same amount of dependently typed programming in Haskell as we used for
our solution in Agda.

We end this thesis with a conclusion, in Chapter 10. We briefly review what
we did and discuss related work and possible future work.

1.4 Contributions

The main contributions of this thesis are

• An implementation of generic type-safe diffing and patching algorithms
for families of datatypes.

• A type-safe memoization technique.

Furthermore, this thesis contains several interesting use cases: generic pro-
gramming in Agda, a list-view universe for types (Chapter 4), dependently
typed generic programming in Haskel (Chapter 9).

Last, but not least, we plan to release our Haskell library on Hackage, the
repository of Haskell library and program package, to the general public.

4

Chapter 2

Lists

UNIX’s diff and patch work on files by treating them as a sequence of lines.
In this chapter, to understand how diffing and patching work, we define imple-
mentations of diff and patch on lists of items in Agda. These implementations
are a simple abstraction from UNIX’s diff and patch implementation where
an item is always a line of text. We also define a data structure to represent an
edit script.

Finding an edit script is computationally equivalent to calculating the edit
distance. The edit distance is the number of (primitive) operations in the edit
script. For lists, calculating the edit script is equivalent to finding a solution for
the longest common subsequence problem [7, 14].

Many of the definitions in this chapter are extended and reused in the
following chapters.

2.1 Longest common subsequence

The longest common subsequence (LCS) problem can be succinctly described:
given a set of sequences, find the longest combination of subsequences that
all sequences have in common. As an example, with sequences of characters
(strings), the LCS of "aebcd" and "abedf" is "abd". The subsequences must
occur in the same order, in this case "aebcd" and "abedf".

The problem of finding the LCS is solvable in polynomial time [7], with a
straightforward algorithm. Better algorithms exist, reducing the computational
complexity, but we present an unoptimized version.

lcs : List Item→ List Item→ List Item
lcs [] = []
lcs [] = []
lcs (x :: xs) (y :: ys) = if x = = y

then x :: lcs xs ys
else longest consumex consumey

where consumex = lcs xs (y :: ys)
consumey = lcs (x :: xs) ys

longest : List Item→ List Item→ List Item
longest xs ys = if length xs 6 length ys then ys else xs

5

Lists 2.2 Edit script

In the case that one of the lists is empty, the common subsequence is an empty
list. In the other case – both lists contain at least one item – we check whether
the first items are the same. If the first item of both lists is indeed the same, we
prepend it to the result of the recursive call the lcs function. If, however, the first
items are different we try two different subsolutions: either the first item of the
xs list is consumed or the y is dropped from the ys list. Both subsolutions are
evaluated and the longest is used as the result.

As an example, assuming Item is a character, the above algorithm returns
"abd" when called as lcs "aabcd" "abdef". The longest common subsequence
is not necessarily unique. For instance lcs "abcdbdb" "cbacbaba" could give
both "bcbb" and "acbb" back as a result. The code above gives the first answer,
because of how longest is defined and called. We are not interested in finding all
longest common subsequences: because the goal is to create a minimal patch,
so any maximal solution will do.

2.2 Edit script

To turn the lcs algorithm into the diff algorithm we modify it to calculate an edit
script instead of the longest common subsequence. An edit script contains a
sequence of edit operations. The result of the diff function is such an edit script,
describing the operations to get from the source list to the target list.

We define the Diff datatype to represent an edit script.

data Diff : Set where
ins : Item→ Diff→ Diff
del : Item→ Diff→ Diff
cpy : Item→ Diff→ Diff
end : Diff

The first three constructors of the Diff datatype represent the different possible
operations: inserting (ins) an item in the list, deleting (del) an item from the
list or copying (cpy) an item. The last constructor (end) is the base case for the
recursive definition, indicating the end of the edit script.

We construct a value of type Diff by recursive application of the constructors.
An alternative approach is to define a datatype for the operations and make Diff
a List of those operations. In the next chapters we extend the edit script and add
more precise types; the type of the recursive Diff argument will depend on the
operation. If we use a simple List, capturing this dependency is not possible.

An edit script describing the changes between the strings "moo" and "cow"
(Item is a Char in this case) can be written as

del ’m’ $
ins ’c’ $
cpy ’o’ $
del ’o’ $
ins ’w’ $
end

Taking the string "moo" and patching it with the above edit script yields the
string "cow". The edit is readable for a human and patching the string "moo" by
hand is a simple task.

6

Lists 2.3 Diffing

The choice for these operations is not arbitrary. Inserting and deleting are
necessary operations for the edit script to be usable. By adding the cpy operation
we make the problem of finding the shortest edit script non-trivial. Otherwise all
edit scripts can simply delete the complete source and then insert the complete
target. More advanced types of edit scripts are not used in the thesis, although
some are discussed in Section 10.1.

The arguments for each constructor of the edit script contain enough in-
formation to be able to reconstruct both the target and source list from the
edit script. A variation is to leave out the Item information in the del and cpy
information. Leaving out Items makes the patch function more forgiving of its
input (if the source list does not exactly match the original source, it might still
succeed), but it also means we can no longer invert the edit script. The inverted
edit script is a description of how to get from the target to the source. Inverting
an edit script with our definition is a simple function replacing each ins with a
del and the other way around. Invertible edit scripts are useful in the context of
distributed version control systems, such as Darcs [2].

Using the edit script, we define the diff and patch functions.

2.3 Diffing

The structure of the naïve diff algorithm is a simple modification of the lcs
algorithm.

diff : List Item→ List Item→ Diff
diff [] [] = end
diff [] (y :: ys) = ins y (diff [] ys)
diff (x :: xs) [] = del x (diff xs [])
diff (x :: xs) (y :: ys) = if x = = y then best3 else best2

where best2 = del x (diff xs (y :: ys))
u ins y (diff (x :: xs) ys)

best3 = cpy x (diff xs ys)
u best2

The behaviour for empty lists is slightly different. While the lcs algorithm
returned the empty list when either the source or target list was empty (or both),
diff only ends after both the source and target list are completely consumed.

Next, consider the case where both lists have at least one item, but the items
are different: the result is best2. Comparing the diff algorithm with lcs, note that
the del subsolution is the same as consumex, and the ins subsolution the same
as consumey. In other words, inserting an item is equivalent to consuming an
item from the target, while consuming an item from the source is equivalent to
delete operation in the edit script.

The u operator is similar to longest from the lcs algorithm.

u : Diff→ Diff→ Diff
u dx dy = if cost dx 6 cost dy then dx else dy

By using u we choose the edit script that has the minimal cost. The definition of
our cost function determines what the minimal cost means. To find the shortest
possible edit script, we simply define each operation to have cost 1.

7

Lists 2.4 Patching

cost : Diff→N

cost (ins d) = 1 + cost d
cost (del d) = 1 + cost d
cost (cpy d) = 1 + cost d
cost end = 0

The goal of finding the shortest edit script is equivalent to the goal of the lcs
algorithm, which finds the maximal number of equal parts of a sequence.

Finally, the last case of the diff algorithm is that both lists have at least one
item and the first item is the same for both lists. In this case, the result is best3,
choosing the best subsolution out of either deleting, inserting or copying the
item. Abstracting out the (implicit) cost function makes the diff algorithm more
flexible than the lcs algorithm defined previously. By defining diff with best3 we
can use different cost functions to get different edit scripts. The lcs algorithm
always copies when two items are the same.

To see how an edit script is used, we look at patch.

2.4 Patching

The patch function takes a Diff and a value and may produce a patched value.

patch : Diff→ List Item→ Maybe (List Item)

If the Diff contains an operation that cannot be fulfilled, e.g., the item of del oper-
ation does not match the item in the source list, patching fails. In combination
with diff, however, the following property should hold:

patch-diff-spec = ∀ xs ys→ patch (diff xs ys) xs ≡ just ys

When patch is applied to the result of diff and the same source list (xs) as diff, it
returns a list identical to the target list (ys) argument of diff.

The patch function is straightforward to implement. We use a slightly more
general definition than is needed at this point, which allows us to unify the
definition of patch across chapters. Only the insert and delete functions differ in
the following chapters.

patch (ins x d) ys = (insert x � patch d) ys
patch (del x d) ys = (patch d � delete x) ys
patch (cpy x d) ys = (insert x � patch d � delete x) ys
patch end [] = just []
patch end (y :: ys) = nothing

The operator � is monadic composition on Maybe. If the patch fails anywhere,
nothing is propagated as the result.1

� : ∀ {A B C} →
(B→ Maybe C)→ (A→ Maybe B)→ (A→ Maybe C)

(g � f) x with f x
. . . | nothing = nothing
. . . | just y = g y

1Refer to Appendix A for Agda syntax explanations

8

Lists 2.5 Discussion

Let us look at each of the cases for patch and the implementations of insert
and delete.

insert : Item→ List Item→ Maybe (List Item)
insert x ys = just (x :: ys)

In the ins case, we add the item as the head of the list. Later versions of insert
can fail, so we already use Maybe here to be able to keep the type signatures
similar and the definition of patch the same.

In the del case, if the input list is empty or the expected item is not found in
the target, delete returns nothing.

delete : Item→ List Item→ Maybe (List Item)
delete x [] = nothing
delete x (y :: ys) = if x = = y then just ys else nothing

Otherwise, the item is discarded and the tail of the target list returned.
The case for cpy uses both insert and delete. Deleting is done before the ap-

plying the rest of the edit script, therefore operating on the source list. Inserting
is done after patching, when the source list has been transformed into a (partial)
target list.

The end case only succeeds if both the source and target list have been
processed completely.

2.5 Discussion

The implementation of the diff algorithm as presented above is very inefficient.
Because we have multiple recursive calls at every step, without sharing of
subresults, the complexity of the algorithm is exponential. There are several
ways to improve this naïve algorithm.

• Given the cost and _u_ functions above, we can simply replace best3 by
the cpy operation if copying is possible, because it will never lead to a
higher cost. If we choose to insert or delete an element when copying
is possible, we might need to compensate with a delete or insert later,
resulting in a higher cost. Compare this behaviour to the lcs function,
which always includes an item if it can be copied.

• Using a dynamic programming or memoization approach, we can share
recursive calls as much as possible. In Chapter 6 we show how to use
memoization for an evolved version of the algorithm presented in this
chapter.

• Instead of recomputing the cost of the patches at every recursive step, we
can pair the cost computation with the computation of the diff itself. If
the cost comparison is lazily evaluated, we can also save on computation
of the diff. To be able to use lazy comparison we need to implement
the algorithm in a language supporting lazy evaluation, such as Haskell.
In Chapter 9 we do show a Haskell implementation that benefits from
lazyness.

9

Lists 2.5 Discussion

For now, we defer the efficiency issues until Chapter 6 and focus on clarity
of representation for the next chapters.

In Chapter 3 we look how to extend the diffing and patching algorithms
to work with trees and in Chapter 5 we show how to extend the algorithms
furither to work with type-safe edit scripts.

10

Chapter 3

Trees

Trees are generic way to represent (almost) all datatypes. Values of datatypes
can be represented as a tree by using the constructors as labeled nodes and the
arguments of the constructor (which we also call fields) as the subtrees. Our goal
is to define diffing and patching for datatypes, by using trees.

To do diffing and patching on trees, we need an algorithm similar to the
longest common subsequence algorithm from the last chapter. As in the previ-
ous chapter, finding the algorithm is not part of our research, but we implement
the algorithm in a more general way than previously published.

The research area for complex structured data is much wider than that of
sequential data. There are several variations of the problem of calculating
the tree edit distance. For instance, the edit operations may include inserting,
deleting, updating, or copying single nodes or entire subtrees. The trees may
be ordered or unordered, labeled or unlabeled, rooted or unrooted [28, 33, 8].
Furthermore, the same problem is sometimes researched in different fields and
may even have different names.

The research fields that produced the most relevant work for our problem are
(meaningful) change detection [10, 9], XML [23] diffing and program syntax [32].
Also, in the context of syntax-directed version control [30] an algorithm to do
diffing and patching is needed.

Considering the amount of research done previously, it almost seems to
suggest we should be able to translate our problem to an existing solution, such
as a simple XML format. However, as this chapter and the next chapter show, to
have a solution for diffing and patching datatypes in a type-safe way, we need to
have a powerful type system. We therefore first implement a simple algorithm
for trees in this chapter. This implementation provides a clue of what we need
to do to make the algorithm suitable for datatypes: add more descriptive types.

The trees we use are labeled ordered rose trees. Each node in a rose tree has
an arbitrarily-sized forest of subtrees.

data Tree : Set where
node : Label→ List Tree→ Tree

The implementation of Label is not important. As for Item in the previous chapter,
we only require an implementation of an equality test for Label. The structure
of the rose tree is suitable to represent regular datatypes, the Label being the
name of the constructor and the subtrees the fields of constructor. In Section 3.5

11

Trees 3.1 Maximum Common Embedded Subtree

Figure 3.1: Contracting edges

we show an example how such a tree can be used as an (untyped) datatype
representation.

3.1 Maximum Common Embedded Subtree

We can use the same approach as we did in the previous chapter. By modifying
an algorithm that finds the largest common tree (similar to the longest common
subsequence) we can construct an algorithm that calculates an edit script.

The problem for finding the largest common tree is called the Maximum
Common Embedded Subtree (MCES) problem by Lozano and Valiente [17].
Given a set of trees, we need to find the largest possible tree contained in all of
them. As with finding the subsequence, the tree does not have to be one part in
both source and target, but may be constructed from several subtrees.

The MCES algorithm presented by Lozano and Valiente [17] is based on
work by Klein [16] and works with ordered, untyped trees. The nodes do not
have a value, so there is no value to have a type. Our presentation is adapted to
include a label for each node, of a single type, a trivial extension.

The key idea of the MCES algorithm is the contraction of edges that rep-
resents the insert and delete operations. As with lists, consuming ‘something’
from the source is deleting, consuming ‘something’ from the target is the insert
operation. For the MCES algorithm, that ‘something’ is an edge, and consuming
an edge means contracting it. Contracting is demonstrated in Figure 3.1. The
dashed edge is contracted, one of the nodes is deleted and the result is the right
tree.

3.2 Edit script

In the MCES algorithm as presented by Lozano and Valiente the trees are
serialized to a sequence before the operations are applied. We believe the
serialized representation obscures the general algorithm and we can do better.
We only keep the depth-first preorder traversal of the serialization and choose
suitable data structures.

3.2.1 Datatype

The Diff datatype for trees is nearly the same as that for lists.

data Diff : Set where
ins : Label ×N→ Diff→ Diff

12

Trees 3.2 Edit script

del : Label ×N→ Diff→ Diff
cpy : Label ×N→ Diff→ Diff
end : Diff

Instead of an item, we pair the Label with a number representing the arity, the
number of (direct) children for each node. We diverge from the original MCES
algorithm, which is untyped, because we restrict the operations such that nodes
not change arity.

3.2.2 Stack

The diff and patch functions do not work directly with Tree arguments. Instead,
they take a list of Trees, representing a stack-based approach to traversing the
tree. The reason using stacks is that when we consume an edge and a node, we
need to deal with multiple subtrees.

Consider the following example tree

node a (node b [] :: node c [] :: node c [] :: [])

with abstract labels a, b, and c. We can depict the tree as

a

b c c

Applying the partial diff del (a , 3) to the tree above (which removes the node
labeled a) results in multiple trees, the three children of the node a:

b ; c ; c

In terms of stack operations: we pop a tree with root a and 3 children, and we
push each of those children back to the stack.

When we now want to add another label to the tree, we have to figure out
how many of the trees on the stack become children of that node. Here is where
we need the arity. For example, applying the partial diff ins (d , 2) pops two
trees from the stack and pushes one back, resulting in two trees:

d

b c

; c

One might argue that the arity is not needed for the del case. This is true, but we
include it for the same reason we include the label of the node in the del case,
which is also not strictly needed: to check if the node to delete matches with the
node we expect.

3.2.3 Example

We look at an edit script describing the changes between two trees. As Labels
we use characters. The source tree contains five nodes, labeled from ’A’ to ’E’:

13

Trees 3.3 Diffing

sourceTree = node ’A’ (node ’B’ [] ::
node ’C’ (node ’D’ [] ::

node ’E’ [] :: []) :: [])

The target tree contains 4 of the 5 nodes. Node ’C’ has been deleted and the
tree is built differently.

targetTree = node ’A’ (node ’D’ (node ’B’ [] :: []) ::
node ’E’ [] :: [])

We can graphicly display both trees:

’A’

’B’ ’C’

’D’ ’E’

’A’

’D’

’B’

’E’

The result of the diff function, defined below, on those trees is the following
edit script:

1. cpy (’A’ , 2) $
2. ins (’D’ , 1) $
3. cpy (’B’ , 0) $
4. del (’C’ , 2) $
5. del (’D’ , 0) $
6. cpy (’E’ , 0) $
7. end

The code above is a single edit script, with line numbers used to number
each operation. We depict each step in the graphic below.

’A’

’B’ ’C’

’D’ ’E’

1

3
4

5 6

’A’

’D’

’B’

’E’

1

2

3

6

The first operation, cpy (’A’ , 2), consumes the ’A’ node from both the source
and the target. The arity, 2, indicates that the result of this cpy operation is two
subtrees. The second operation, ins (’D’ , 1), consumes the node ’D’ from the
target, leaving a single subtree. The del operation (step 4 and 5) consume nodes
from the target tree. Note how the node ’D’ is both inserted and deleted, but
with a different arity. We can only copy a node if the arity does not change, e.g.
the node ’B’ in this example.

In the next section we define how the diff algorithm for trees works.

3.3 Diffing

The structure of the diff algorithm is similar to the version for lists, shown in
Section 2.3. Note, however, that diff works with stacks of trees, in this case for
both the source and the target tree.

14

Trees 3.4 Patching

diff : List Tree→ List Tree→ Diff
diff [] [] = end

diff [] (node y ys :: yss) = ins (y , length ys) (diff [] (ys ++ yss))
diff (node x xs :: xss) [] = del (x , length xs) (diff (xs ++ xss) [])
diff (node x xs :: xss) (node y ys :: yss) =

if (x = = y) ∧ (length xs = =N length ys) then best3 else best2
where

best2 = del (x , length xs) (diff (xs ++ xss) (node y ys :: yss))
u ins (y , length ys) (diff (node x xs :: xss) (ys ++ yss))

best3 = cpy (x , length xs) (diff (xs ++ xss) (ys ++ yss))
u best2

We calculate the arity simply with the length function. In the last, most inter-
esting case we check both the label and the arity for equality when deciding
whether to use cpy or not.

Note an important similarity between this diff implementation and the one
for lists: both source and target are traversed in a fixed order. We start at the root
of the first tree on both stacks and recursively visit all the child nodes, doing a
depth-first preorder traversal, thereby reducing the tree diff to a list diff. The
reduction is similar to the serialization used by Lozano and Valiente and it also
indicates that we can use a standard dynamic programming approach to get to
an efficient implementation of the diffing algorithm.

3.4 Patching

The type signature of the patch function shows that patch also works on Lists of
trees, representing the stacks.

patch : Diff→ List Tree→ Maybe (List Tree)

but its definition remains exactly the same. We only need to reimplement the
insert and delete functions:

insert : Label ×N→ List Tree→ Maybe (List Tree)
insert (x , n) yss with splitAt n yss
. . . | (ys , yss′) = if length ys = =N n

then just (node x ys :: yss′)
else nothing

delete : Label ×N→ List Tree→ Maybe (List Tree)
delete (x , n) [] = nothing
delete (x , n) (node y ys :: yss) = if (x = = y) ∧ (n = =N length ys)

then just (ys ++ yss)
else nothing

Both the insert and delete function can fail in this case, unlike the implementation
for lists. We use the function splitAt, a function from Agda’s standard libraries
that splits a list at a given position, to pop the right amount of subtrees from
the stack. Because the function also works when n is bigger than the length
of the lists, we need to check if it is within the bounds the of the list. The = =N

15

Trees 3.5 Discussion

function is an equality test for natural numbers. The insert fails if the arity of the
label inserted is larger than the available subtrees. If insert succeeds, it uses the
subtrees from the stack and pushes a new node on top of the stack.

For delete we inspect the topmost tree. We cannot delete from an empty tree,
so we return nothing in that case. However, if both x = = y and the arity of the root
node of the topmost tree matches the expected arity, we can safely delete the
node and push the subtrees onto the stack.

3.5 Discussion

The tree diff and patch defined in this chapter can be used for diffing and patching
datatypes. We use the constructor names as labels. However, since the tree
nodes do not contain any type information, we quickly run into problems.

Consider a family of two mutually recursive datatypes:

mutual
data Expr : Set where

add : Expr→ Term→ Expr
one : Expr

data Term : Set where
neg : Expr→ Term

This is an example family for the purpose of demonstration only, containing a
small number of constructors, each of different arity. We encode the constructors
as the labels in the tree, together with the arity. For example, (addl , 2) is the
encoding off the add constructor. We can not, however, encode the types of the
constructors.

Now, consider the following Diff

badDiff = ins (addl , 2) $ ins (onel , 0) $ ins (onel , 0) $ end

Evaluating patch badDiff [] yields the singleton

add

one one

which does not correspond to a well-typed expression. The tree patch and diff
obey the patch-diff-spec, but patch cannot exclude values, such as badDiff, that
produce ill-typed terms. In the Chapter 5, we revisit this example family and
show how we can restrict diff and patch by constructing a more refined Diff type.

16

Chapter 4

Universe

This chapter is an intermezzo connecting the tree diffing and patching to type-
safe implementations. In the previous chapter, we demonstrated how using
tree diffing and a simple encoding of constructors was not sufficient to achieve
generic, type-safe diffing and patching. In the next chapter, we will use generic
programming to give a better, generic, type-safe implementation of diffing and
patching for datatypes. To get there, we define an encoding of constructors and
their types, suitable for datatype-generic programming [13], in this chapter.

Almost all generic programming libraries use a generic view to represent the
structure of datatypes [15]. The most popular is the sum of products view – e.g.
in Extensible and Modular Generics for the Masses [21] – which allows generic
functions to be defined by induction on the structure.

The generic view is one part of a universe [6, 19, 22]. A universe consists of a
datatype of codes (the view) and an interpretation function that maps the codes
to types.

4.1 Encoding

There are multiple universes suitable for generic programming. We use one that
corresponds closely to the labeled trees we considered in Chapter 3.

Consider again the datatypes we used as an example in Section 3.5.

mutual
data Expr : Set where

add : Expr→ Term→ Expr
one : Expr

data Term : Set where
neg : Expr→ Term

A group of datatypes is also called a system or a family. The family formed by the
datatypes above contains two mutually recursive datatypes with constructors
of different arities. We use this family as an example to explain the encoding we
chose.

The encoding is based on simply numbering the types and constructors.
Each unique type has a fixed index in a family. The indices are of type TypeIx,
which we explain later. For the example, we give the indices readable names.

17

Universe 4.1 Encoding

exprIx : TypeIx
exprIx = zero

termIx : TypeIx
termIx = suc zero

A type index, however, is not yet a type encoding. We use the indices later to
refer to types in the encoding of the family.

To encode a constructor we use a list for the arguments (or fields) of the
constructor. Each argument is encoded as a type index, as defined above. We
encode the constructor neg (of the type Term) as ‘neg’. The argument of neg is of
type Expr, which we refer to with exprIx.

‘neg’ : Con
‘neg’ = exprIx :: []

Similarly, a type has a number of constructors. To encode a type, we define an
encoding for each constructor and group them together in a list to encode the
type. The type Term has only one constructor.

‘term’ : Type
‘term’ = ‘neg’ :: []

The type Expr is defined similarly:

‘add’ : Con
‘add’ = exprIx :: termIx :: []

‘one’ : Con
‘one’ = []

‘expr’ : Type
‘expr’ = ‘add’ :: ‘one’ :: []

We use the encoding of the types to encode the family. To guarantee that the
type indices are unique and to be able to look up a type encoding using a type
index, we group all the types in the (example) family together in a value of type
Fam.

‘example’ : Fam
‘example’ = ‘expr’ :: ‘term’ :: []

This concludes the example. For the types of the encoding of the example, Con,
Type, Fam, etc., we create a module Codes.

module Codes (n : N) where

The module is parameterized by the natural number n, abstracting over the
size of the family. The parameterization makes n available in the scope of the
module and we use it for the Fam type, which is a vector of Types:

Fam : Set
Fam = Vec Type n

The type of Type is simply a List of Con and the Con is a List of TypeIx for
which we use the alias TypeIxs.

18

Universe 4.2 Interpretation

Type : Set
Type = List Con

Con : Set
Con = TypeIxs

Now, for the TypeIx we use the n again to construct the type Fin n1. By
reusing n we restrict the type indices to the number of datatypes in the family
and thereby guarantee that a type index always points to a type available in the
family.

TypeIx : Set
TypeIx = Fin n

TypeIxs : Set
TypeIxs = List TypeIx

Note that the placement of the codes for types in a Fam vector must match the
indices of those types; this is not enforced by the type system.

4.2 Interpretation

The second part of a universe is the interpretation function. The interpretation
function converts codes to types.

We used three encodings: for constructors (Con), types (Type) and the family
(Fam). For each of those types we need an interpretation function.

Not only are we interested in calculating types from codes, but we also need
a way to write values of those types. We can use an environment to store values
with types calculated from codes in a heterogeneous list-like structure.

4.2.1 Environments

We introduce a small example universe to demonstrate how an environment
works. We use a simple datatype, Code, for encoding natural numbers and
booleans.

data Code : Set where
N : Code
B : Code

An interpretation function maps the codes to types. We define a straightfor-
ward function and use the actual types for natural numbers and booleans.

interpretation : Code→ Set
interpretation N = N

interpretation B = Bool

Note that interpretation is a type function, its result is a type (of type Set).
Using an environment we can use Code and the interpretation function to create

a heterogeneous list with items that are either a natural number or a boolean.

1An explanation of the Fin type can be found in Appendix A.

19

Universe 4.2 Interpretation

Environments are heterogeneous lists parameterized by an interpretation
function I and indexed by a list of codes:

data Env {A : Set} (I : A→ Set) : List A→ Set where
[] : Env I []

:: : ∀ { tx txs} → I tx→ Env I txs→ Env I (tx :: txs)

We use the same constructors as List, but the type of an element in the environ-
ment is the result of applying the interpretation function I to a code tx.

For our example, the type of the codes (A) is Code and I therefore has the
type Code→ Set, the type of the interpretation function defined above. We define
environment as an example of a heterogeneous list using a list of Codes and our
interpretation function.

environment : Env interpretation (N :: B :: B :: N :: [])
environment = 4 :: false :: true :: 2 :: []

Next, we look at interpreting the codes we defined to encode families of
datatypes.

4.2.2 Interpretation of families

In this subsection we look at a more complex example of interpretation, using
again the example datatype that we used at the beginning of this chapter.

The goal of the interpretation is to create types and values isomorphic to
the types and values we encoded. We do not explicitly establish the isomor-
phism between the encoded family and the interpretation of the codes, but it is
straightforward to see that the isomorphism holds.

We use a dataype µ to construct values using the encoding of a family and a
TypeIx. The function typeInterp is used to calculate the type of the argument to
the 〈 〉 constructor. For now, we can think of µ being a simple container to hold
interpreted values.

data µ (F : Fam) (t : TypeIx) : Set where
〈 〉 : typeInterp F t→ µ F t

typeInterp : Fam→ TypeIx→ Set

We define the implementation of typeInterp later, after we have constructed all
the necessary building blocks.

Using µ, we write the interpreted types of the ‘example’ family.

Exprµ : Set
Exprµ = µ ‘example’ exprIx

Termµ : Set
Termµ = µ ‘example’ termIx

To write a function that is isomorphic to an encoded constructor, we use the
〈 〉 constructor of the µ datatype. For example the addµ constructor:

addµ : Exprµ → Termµ → Exprµ

addµ e t = 〈 . . . 〉

20

Universe 4.2 Interpretation

The ‘. . .’ is not an Agda language construct, but indicates a blank spot. What has
to be filled in at the ‘. . .’ depends on the implementation of typeInterp, but we can
already imagine that we need two things that are unique for each constructor:
the index of the (encoded) constructor and the arguments. We get the arguments
passed as e and t, but we also need a way to store them.

For the constructor indices, we define a helper function to calculate the type
of the constructor indices given a type index.

ConIx : Fam→ TypeIx→ Set
ConIx F t = Fin (length (lookup t F))

We use lookup to retrieve the encoding of a type from the encoding of the family.
The lookup function is defined in Agda’s standard library as

lookup : ∀ {A n} → Fin n→ Vec A n→ A
lookup zero (x :: xs) = x
lookup (suc i) (x :: xs) = lookup i xs

Note how the n is shared by the Fin and the Vec type. Because the value of the
Fin can not be bigger than the size of the Vec, the lookup always succeeds. The
result of the lookup in our case is the encoding of a type: a list of its constructor
encodings. By using the length of that list we restrict the value of the constructor
indices, ensuring they can be safely used to do lookups in the list of constructors.

Using ConIx, we define readable names for the constructors indices:

addIx : ConIx ‘example’ exprIx
addIx = zero

oneIx : ConIx ‘example’ exprIx
oneIx = suc zero

negIx : ConIx ‘example’ termIx
negIx = zero

We can use a constructor index to retrieve the constructor encoding from the
family if we also have the type index:

lookupCon : (F : Fam)→ (t : TypeIx)→ ConIx F t→ Con
lookupCon F t c = lookup c (fromList (lookup t F))

Note that we have to convert the list of constructor encodings to a vector using
fromList to be able to use lookup. The fromList function is also defined in Agda’s
standard libary:

fromList : ∀ {A} → (xs : List A)→ Vec A (length xs)
fromList List. [] = []
fromList (List._::_ x xs) = x :: fromList xs

We return to filling in the ‘. . .’ in the definition of addµ. To store the argu-
ments and match the encoding of the constructor we can use the Env datatype we
defined in the previous section. The codes for the Env are TypeIxs, which means
the interpretation function must have the type TypeIx→ Set. We construct such
an interpretation function by applying µ to ‘example’.

21

Universe 4.2 Interpretation

Using the arguments passed to the addµ function is passed, we can write the
interpretation of the arguments with the following type:

addArgs : Exprµ → Termµ →
Env (µ ‘example’) (lookupCon ‘example’ exprIx addIx)

addArgs e t = e :: t :: []

We group the index of the constructor and the interpretation of the argu-
ments in a dependent pair, using the Σ datatype from Agda’s standard library.

data Σ (A : Set) (B : A→ Set) : Set where
, : (x : A) (y : B x)→ Σ A B

The type of the second argument of the , constructor depends on the value
of the first argument. With the dependent pair, the ‘. . .’ of the addµ definition
can be written as:

addPair : Exprµ → Termµ →
Σ (ConIx ‘example’ exprIx)

(\c→ Env (µ ‘example’) (lookupCon ‘example’ exprIx c))
addPair e t = addIx , e :: t :: []

Note that we constructed a type that is usable for all constructors encodings of
Expr. Compare the type above with the one for onePair.

onePair : Σ (ConIx ‘example’ exprIx)
(\c→ Env (µ ‘example’) (lookupCon ‘example’ exprIx c))

onePair = oneIx , []

There is quite some repetition in the type signature of the addPair and onePair
functions. We can easily abstract out both the family (‘example’) and the type
index (exprIx) using the typeInterp function.

typeInterp : Fam→ TypeIx→ Set
typeInterp F t = Σ (ConIx F t) (\c→ Env (µ F) (lookupCon F t c))

This completes the definition of the interpretation functions. We can now
fill in the ‘. . .’ in the definition of addµ concisely, without using the addPair or
addArgs functions.

addµ : Exprµ → Termµ → Exprµ

addµ e t = 〈 addIx , e :: t :: [] 〉

data µ” (F : Fam) (t : TypeIx) : Set where
<_>” : Σ (ConIx F t) (\c→ Env (µ” F) (lookupCon F t c))→ µ” F t

In the next section we define a new module defining a separate interpretation
function for each part of the encoding (Con, Type, and Fam). We do away with the
typeInterp and lookupCon functions, but their functionality is still implemented.
Semantically, the µ datatype is unchanged.

22

Universe 4.3 Discussion

4.2.3 Interpretation module

We put the interpretation in a separate module and, as we did with the Codes
module above, abstract over the number n of types in a family. We use the n to
open the Codes module.

module Interpretation (n : N) where
open Codes n

We also abstract out the interpretation function used by the Env. This ab-
straction enables us to define the interpretation functions without having to
pass a Fam to each function and without having to use µ before we defined it.

For the interpretation of a value of Con (the encoding of constructor argu-
ments) we use the environment type.

CJ K : Con→ (TypeIx→ Set)→ Set
CJ K C I = Env I C

The function TJ K implements the interpretation for Type.

TJ K : Type→ (TypeIx→ Set)→ Set
TJ K T I = Σ (Fin (length T))

(λ c→ CJ lookup c (fromList T) K I)

The TJ K function is similar to typeInterp but uses Type directly instead of looking
the Type up in a Fam with a TypeIx. The lookup of Type is done in the interpreta-
tion function for Fam:

FJ K : Fam→ (TypeIx→ Set)→ TypeIx→ Set
FJ K F I t = TJ lookup t F K I

data µ (F : Fam) (t : TypeIx) : Set where
〈 〉 : FJ F K (µ F) t→ µ F t

This definition of µ clearly shows how µ is used in its own definition to construct
the interpretation function used by Env.

In Chapter 5 we use the Interpretation module. The example we use in that
chapter illustrates how the above definitions are used and the full code of the
example is in Appendix B.

4.3 Discussion

For our universe we do not follow the oft-used approach of using functors and
sums-of-products. We chose a representation that closely corresponds to the
labeled trees from Chapter 3. The result still is a sums-of-products approach
– a family is a sum of types, which are products of constructors – however,
our sums and products are of arbitrary arity. We do not need to consider the
restrictions of binary structure and nesting.

In Chapter 5 we see that our view leads to a natural definition of Diff where
ins, del, and cpy can refer to a value simply by using two indices: one for the
type and one for the constructor. This view is therefore easier to work with in

23

Universe 4.3 Discussion

our case, than nested sum constructors and functors. A disadvantage is that
we can’t go deeper than this level: to represent constructors that again take
products of sums we need to introduce new types. It is an inconvenience to
come up with new labels, but we do not lose any expressiveness.

Another advantage we have over functors is that we can use our list in-
dices to refer to other types. Using these references we can represent mutually
recursive types without much hassle, similar to Multirec [27].

24

Chapter 5

Families

In this chapter we define generic, type-safe diffing and patching for families
of datatypes. The algorithms resemble the diffing and patching algorithms for
trees (Chapter 3). We use the codes from the universe we defined in the previous
chapter to implement datatype-generic functions. The codes are also used to
ensure the edit scripts are type-safe: it is not possible to define an edit script
that creates an ill-typed value, as we did with the example in Section 3.5.

The running example in this chapter is a family with two mutually recursive
datatypes:

mutual
data Expr : Set where

add : Expr→ Term→ Expr
one : Expr

data Term : Set where
mul : Term→ Expr→ Term
neg : Term→ Term
two : Term

Using the Codes modules from Chapter 4 we encode the types and create
readable names for the indices of the types and constructors (e.g., exprIx, mulIx,
twoIx). With the Interpretation module, we define the types Exprµ and Termµ and
functions isomorphic to the constructors of the datatypes above. The full code
this example encoding and interpretation can be found in Appendix B.

addµ : Exprµ → Termµ → Exprµ

oneµ : Exprµ

mulµ : Termµ → Exprµ → Termµ

negµ : Termµ → Termµ

twoµ : Termµ

5.1 Example

Before we look at the definition of the edit script, we first consider an example
of how diffing two expressions works. We use the constructor functions defined

25

Families 5.1 Example

above to write two example expressions, displayed as trees below:

mulµ

twoµ addµ

oneµ twoµ

mulµ

negµ

twoµ

oneµ

In the edit script for trees (Section 3.2.1), we used the label of the node as
an argument to the edit script operations (the constructors ins, del, and cpy).
The ‘nodes’ are now constructor functions, but we have an easy way to refer to
them: we use the indices of the type and the constructor in the encoding. For
example, addµ is the constructor at position addIx in the type at position exprIx in
the family, so we can refer to it with the pair (exprIx , addIx). When using an edit
script with patch, we reconstruct the constructor functions using these indices.

The expressions above are relatively small, so we can write the edit script
we expect the diff function to return:

1. cpy (termIx , mulIx) $
2. ins (termIx , negIx) $
3. cpy (termIx , twoIx) $
4. del (exprIx , addIx) $
5. cpy (exprIx , oneIx) $
6. del (termIx , twoIx) $
7. end

The line numbers before each operation match the numbered boxes below. At
step 1, all boxes annotated with 1 are consumed, at step 2 the box annotated
with 2 is consumed, etc.

mulµ

twoµ addµ

oneµ twoµ

1

3
4

5 6

mulµ

negµ

twoµ

oneµ

1

2

3

5

To prevent the construction of ill-typed edit scripts, we add extra type
information to the Diff type. We parameterize the Diff type with the type indices
of the encoding of the source and the target value. For example, the type of the
edit script above is Diff (termIx :: []) (termIx :: []), because both the source and the
target expression is of type Termµ. We use a list of type indices to represent a
stack, to keep track of multiple subtrees (as we did with trees, in Section 3.2.2).

Each operation of the edit script has a recursive argument for the rest of the
edit script of a parameterized type Diff. The exact type of the recursive argument
depends on the operation since the parameters to the Diff type contain the type
indices of the types currently on the stack. The type of each partial edit script for
our example (starting at the corresponding line number above) is listed below:

1. Diff (termIx :: []) (termIx :: [])
2. Diff (termIx :: exprIx :: []) (termIx :: exprIx :: [])

26

Families 5.2 Edit script

3. Diff (termIx :: exprIx :: []) (termIx :: exprIx :: [])
4. Diff (exprIx :: []) (exprIx :: [])
5. Diff (exprIx :: termIx :: []) (exprIx :: [])
6. Diff (termIx :: []) []
7. Diff [] []

The type of the complete edit script is at line 1. The first operation of the
edit script is copying the mulµ constructor. Because we copy, we consume the
constructor from both the source and target, leaving two subexpressions. The
following things happen to the type, in stack terms: we pop termIx from the
list of type indices and push back the type indices of the arguments of the mulµ
constructor. The next operation is inserting the negµ constructor. We consume
negµ from the target. The termIx type index is popped from the stack of type
indices of the target. The argument of negµ is also of type Termµ, so we push
back termIx, ending up with the same type as the previous step. We continue
until both expressions have been completely consumed and end with end of
type Diff [] [] in step 7.

The pattern is straightforward: when we consume a constructor the type of
the rest of the edit script changes. The type index of the constructor is removed
from the head of the list of type indices, and the type indices of the arguments
of the constructor are added at the front of the list. With our encoding, we can
easily find the type indices of arguments of a constructor: using a type index
and a constructor index we look up the matching Con.

In the next section we define the datatype for the edit script and formalize
the pattern described above.

5.2 Edit script

The code of this chapter, excluding the examples, is grouped together in the
module GenericDiff. The module is parameterized with the natural number n, the
number of datatypes in the Family. We use n to open the Codes and Interpretation
module from Chapter 4.

module GenericDiff (n : N) where
open Codes n
open Interpretation n

Inside this module, we create a module FamDiff that allows us to abstract over
the family we define diffing and patching for and makes the family available as
F inside the module.

module FamDiff (F : Fam) where

The pair of the type index and the constructor index that we used in the
example above is defined as a dependent pair:

Ixs : Set
Ixs = Σ TypeIx ConIx

The ConIx function uses the type index t to look up the type code in the
family F, similar to the ConIx function of Section 4.2.2, but without the Fam
argument, because we can now use the module parameter F.

27

Families 5.2 Edit script

ConIx : TypeIx→ Set
ConIx t = Fin (length (lookup t F))

The Diff datatype is parameterized by the TypeIxs of the source and the target.
Each constructor in this definition of Diff has a different type, because we restrict
how the source and target TypeIxs change.

data Diff : TypeIxs→ TypeIxs→ Set where
ins : { txs tys : TypeIxs} → (i : Ixs) →

Diff txs (fields i ++ tys)→
Diff txs (typeix i :: tys)

del : { txs tys : TypeIxs} → (i : Ixs) →
Diff (fields i ++ txs) tys →
Diff (typeix i :: txs) tys

cpy : { txs tys : TypeIxs} → (i : Ixs) →
Diff (fields i ++ txs) (fields i ++ tys)→
Diff (typeix i :: txs) (typeix i :: tys)

end : Diff [] []

For example, in the ins case, the recursive Diff argument must contain the fields
of i on top its target stack. When applying the insert operation, these fields are
used to construct a value of the type with typeix i, which is pushed on top of the
stack without the fields (tys).

fields : Ixs→ TypeIxs
fields (t , c) = lookup c (fromList (lookup t F))
typeix : Ixs→ TypeIx
typeix (t , c) = t

To illustrate why Diff helps us ensure type-safety, we revisit the example
from Section 3.5, but use the types defined in this section. Consider the Diff

ins (exprIx , addIx) $ ins (termIx , twoIx) $ ins (termIx , twoIx) $ end

This Diff is now ill-typed. Looking at the partial Diff

ins (termIx , twoIx) $ ins (termIx , twoIx) $ end

we can see that it is of type

Diff [] (termIx :: termIx :: [])

i.e., a Diff that creates two terms. On the other hand, the partial Diff

ins (exprIx , addIx)

has the type

∀ { txs tys} →
Diff txs (exprIx :: termIx :: tys)→ Diff txs (exprIx :: tys)

The types show that the latter expression expects a Diff producing an Expr and a
Term and is therefore not compatible with the former.

28

Families 5.3 Patching

5.3 Patching

We use the µEnv type constructor as a simple shorthand:

µEnv : TypeIxs→ Set
µEnv = Env (µ F)

We apply Env to the interpretation function for the family the module is param-
eterized with.

The patch function uses the indices in the Diff type to calculate the type of the
source and target value, by interpreting the indices using the environment for
the family.

patch : { txs tys : TypeIxs} →
Diff txs tys→ µEnv txs→ Maybe (µEnv tys)

Note that despite the additional type information, patch is still partial. If we
would want to assure patch always succeeds, we would have to parameterize
the Diff datatype by not only the top-level type indices (from source and target),
but by the indices of all the types and constructors in the expression. Including
all type indices in the Diff type would lead to a trivial implementation of patch:
we could easily project out the indices (of both the source and the target) and
interpret them to values.

The definition of patch is again the same as the one for lists in Section 2.4, we
only have to adapt the insert and delete functions.

5.3.1 Inserting

As the type of the ins constructor defines how the stacks of type indices must
change, so does the type of the insert function:

insert : { ts : TypeIxs} → (i : Ixs)→
µEnv (fields i ++ ts)→ Maybe (µEnv (typeix i :: ts))

The ins constructor only used the stacks of codes. In the definition of insert, how-
ever, we also use an environment. The type signature contains hints about what
needs to happen in the implementation: using the encoding of the constructor
(i), the environment contains values that match the types of the fields of the con-
structor and the rest (ts). If patching succeeds, we return an environment that
starts with a value of the type encoded in i and leaves the rest (ts) unchanged.

insert (t , c) xss = splitEnv (fields (t , c)) xss
(λ xs ys→ just (〈 c , xs 〉 :: ys))

The function splitEnv (defined below) uses the type indices to split the environ-
ment in a part matching those type indices and the rest of the environment
and passes them to a continuation function. In the continuation function we
create a pair of the constructor index (c) and the fields (xs) and pass that to the
constructor of µ to create the value, then prepend the value to the start of the
environment.

Note how we can use the fields function in both the type and the definition.
Also note that insert can not fail, because the type signature dictates that all

29

Families 5.3 Patching

required fields are present. Compare this insert function to the one we used
for patching trees in Section 3.4, where we do not have the guarantee that the
required number of children is present.

Splitting an environment

The splitEnv function splits a given environment Env I (txs ++ tys) into an
Env I txs and an Env I tys, given a txs, and passes the result to a continuation
function.

splitEnv : {A R : Set} { I : A→ Set}
(txs : List A) { tys : List A} →
Env I (txs ++ tys)→
(Env I txs→ Env I tys→ R)→ R

splitEnv [] xs k = k [] xs
splitEnv (:: txs) (x :: xs) k =

splitEnv txs xs (λ ys zs→ k (x :: ys) zs)

As an example, consider again our simple universe of natural numbers and
booleans, encoded with N and B, from Section 4.2.1. We defined the value
environment:

environment : Env interpretation (N :: B :: B :: N :: [])
environment = 4 :: false :: true :: 2 :: []

When we split the value above into two parts, we create a function that expects
a continuation function that gets both parts as arguments.

splitEnvironment : {R : Set} →
(Env interpretation (N :: B :: [])→
Env interpretation (B :: N :: [])→
R)→ R

splitEnvironment = splitEnv (N :: B :: []) environment

5.3.2 Deleting

For deleting, we need the opposite function of splitEnv: a function that appends
one environment to another. The +++ function is a straightforward implemen-
tation for environment concatenation, mimicking list concatenation (++).

+++ : {A : Set} { I : A→ Set}
{ txs : List A} { tys : List A} →
Env I txs→ Env I tys→ Env I (txs ++ tys)

[] +++ ys = ys
(x :: xs) +++ ys = x :: (xs +++ ys)

Unlike the insert function, the delete function can fail: when the expected
constructor index does not match the index of the constructor of the value, we
return nothing.

delete : { ts : TypeIxs} → (i : Ixs)→
µEnv (typeix i :: ts)→ Maybe (µEnv (fields i ++ ts))

30

Families 5.4 Diffing

delete (t , c) (〈 c′ , xs 〉 :: xss) with c
?=Fin c′

delete (t , c) (〈 .c , xs 〉 :: xss) | just refl = just (xs +++ xss)
. . . | nothing = nothing

We check if two constructor indices are equal with ?=Fin , which maybe returns
an equality proof.

?=Fin : {n : N} → (x y : Fin n)→ Maybe (x ≡ y)

For the proof type, we use the propositional equality datatype from the Agda
standard library:

data _≡_ {A : Set} (x : A) : A→ Set where
refl : x ≡ x

A value of x ≡ y encodes the equality of x and y. There is only one possible
constructor, refl. If we pattern match on refl the type checker tries to infer that
x and y are equal, if they are not equal, type checking fails. If type checking
succeeds, the type checker can then use the information that x and y are equal
in subsequent type checking. Note that we write .c in the case c

?=Fin c′ returns
just refl. The dot tells Agda’s type checker to first consider the rest of the
expression. After it finds the refl constructor it can infer that the value at position
.c is indeed equal to c.

The implementation of ?=Fin is straightforward.

zero
?=Fin zero = just refl

(suc m) ?=Fin (suc n) with m
?=Fin n

. . . | nothing = nothing

(suc m) ?=Fin (suc .m) | just refl = just refl
?=Fin = nothing

5.4 Diffing

Like patch, the diff function also operates on interpreted environments:

diff : ∀ { txs tys} → µEnv txs→ µEnv tys→ Diff txs tys

Note how the shapes of the environments determine the type of the resulting
Diff.

The code for the algorithm is similar to the tree version from Chapter 3.

diff { []} { []} [] [] =
end

diff { tx :: } { []} (〈 cx , xs 〉 :: xss) [] =
del (tx , cx) (diff (xs +++ xss) [])

diff { []} { ty :: } [] (〈 cy , ys 〉 :: yss) =
ins (ty , cy) (diff [] (ys +++ yss))

31

Families 5.5 Discussion

diff { tx :: } { ty :: } (〈 cx , xs 〉 :: xss) (〈 cy , ys 〉 :: yss)
with ((tx , cx) ?=Ixs (ty , cy))

. . . | nothing = ins (ty , cy) (diff (〈 cx , xs 〉 :: xss) (ys +++ yss))
u del (tx , cx) (diff (xs +++ xss) (〈 cy , ys 〉 :: yss))

diff { tx :: } { .tx :: } (〈 cx , xs 〉 :: xss) (〈 .cx , ys 〉 :: yss)
| just refl = ins (tx , cx) (diff (〈 cx , xs 〉 :: xss) (ys +++ yss))

u del (tx , cx) (diff (xs +++ xss) (〈 cx , ys 〉 :: yss))
u cpy (tx , cx) (diff (xs +++ xss) (ys +++ yss))

Note that the type index stacks are passed implicitly, but are used to guide the
pattern matching on the interpreted values. Agda checks the arguments of a
function from left to right, and by pattern matching on the codes it infers the
shape of the environment.

The diff function still has four cases, but the fourth one is split into two cases,
depending on the equality of the type and constructor indices. The function

?=Ixs performs the equality test and is implemented similarly as, and using,
?=Fin .

?=Ixs : (ix iy : Ixs)→ Maybe (ix ≡ iy)
(tx , cx) ?=Ixs (ty , cy) with tx

?=Fin ty
. . . | nothing = nothing

(tx , cx) ?=Ixs (.tx , cy) | just refl with cx
?=Fin cy

. . . | nothing = nothing

(tx , cx) ?=Ixs (.tx , .cx) | just refl | just refl = just refl

The types of the edit script constructors restrict the implementation of diff,
as expected: if we would try to write cpy as a possible solution when the type
and constructor indices are different, the type checker makes sure the code does
not compile.

5.5 Discussion

The implementation presented in this chapter is a working implementation.
There are many opportunities for improvement though. For example, it is
extremely slow. An efficient implementation is presented in Chapter 6.

While our universe can in theory represent types with very many or – using
laziness – even infinite numbers of constructors such as Char and N, it is clearly
not efficient to use codes that way. Instead, it is desirable to represent such types
in our encoded family using abstract types, types that do not contain an encoding
of each constructor but use an existing implementation. We implement abstract
types in Chapter 7.

To improve both readability of the edit scripts and efficiency of patching we
can compress the Diff, merging cpy operations that copy complete subtrees. We
implement compression in Chapter 8.

32

Chapter 6

Memoization

The implementations presented in the previous chapters are not very efficient.
The algorithms calculate the best edit script, using the cost function, and there-
fore try every possible edit script, making two recursive calls or even three –
when copying is possible – at each step. Many execution paths overlap, e.g., first
deleting an item and then inserting another item results in the same subproblem
as doing it vice versa.

To prevent recursive calls from repeatedly doing the same work, we need
a mechanism to share subcomputations. If a particular subproblem is already
computed, we want to reuse its solution. To enable this reuse, we need two
things: a way to store subsolutions, and a way to identify subproblems so we
can find the right solution.

In this chapter we show a memoization technique [18] that solves the sharing
of subproblems. We first briefly discuss how memoization works with lists
and then describe the adaptations we need to make to work with the generic
algorithm we presented in Chapter 5.

6.1 Lists

To illustrate why the naïve list diffing algorithm is inefficient, consider the
execution paths of diff with as input two lists of characters, "cow" and "moo".
We show the execution in a table. An arrow means a character is ‘consumed’.
We can consume a character from the source string ("cow") by deleting, e.g.,
del ’c’ is depicted by a rightward arrow in the first column. Similarly, the ins
operation is depicted by the downward arrows. The diagonal arrows depict the

33

Memoization 6.2 Trees

cpy operation; a character from both the source and target string is consumed.

’m’

’o’

’o’

’c’ ’o’ ’w’
1

1

1

1

1

1

1

1

1

1

1

1

22

2 3

3

33

3

4

4

8

8

12

15

The number of the arrow is number of times the execution path performed
the operation depicted by that arrow. If we add the numbers of all arrows we
calculate the number of steps the algorithm took: 81. If we simply count the
number of arrows, we see there are only 21 different steps the algorithm can
take. Due to the exponential nature of the algorithm duplicated execution paths
dominate the execution time of the algorithm for any non-trivial example.

For lists, we can easily refer to subproblems by counting the number of
characters consumed in both the source and target, e.g., the diff between "ow"
and "o" can be referred to by (1 , 2). In a imperative setting, a mutable nested
array (table) is commonly used to save and look up subsolutions in. Note that
each solution depends on its subsolution and therefore the table is filled starting
at the ‘empty’ solution, in our example that is position 3 , 3, corresponding with
the lower right corner in the illustration above. When the cell at 0 , 0 is filled,
we have a solution for the complete problem.

6.2 Trees

For our trees algorithm from Chapter 3 and also the generic algorithm from
Chapter 5, we can also use a table. Because the trees are traversed with a depth-
first preorder traversal, we have effectively serialized the problem: there is no
extra branching in execution paths although we are dealing with branching
structures. The same property still holds, deleting and then inserting a label
or constructor still leads to the same subproblem as inserting first and then
deleting.

In case of lists or tree diffing, the cells of the lookup table are all of the same
type, namely Diff. In the generic case, however, our Diff has been parameterized
by the lists of TypeIxs and each cell has a different type. We need to keep the
type information also in the memoized algorithm, because when we look up
the solution of a subproblem it still has to be of the correct type. Therefore, we
define a custom data structure to build a table with a different type for each cell.

6.2.1 Table datatype

When describing the table for the subproblems, we have to distinguish four
different situations, depending on whether the source list is empty (nc), the
target list is empty (cn), both lists are empty (nn), or both lists are non-empty
(cc).

34

Memoization 6.2 Trees

The last case is the most interesting, the situation is shown in the following
picture:

〈 cx , xs 〉 :: xss xs +++ xss . . .

〈 cy , ys 〉 :: yss

ys +++ yss

...

i

d

c

At this point, there are three subproblems available, depending on the action
we (can) take. If we delete cx the subproblem is d and the form of the source
becomes xs +++ xss of type µEnv (fields (tx , cx) ++ txs). If we insert cy the
subproblem is i and if cx and cy are the same constructor, we can copy and the
subproblem is c.

The picture also shows that the i and d subproblems share the subproblem c,
so even when we cannot copy we still have to calculate the c subproblem. Note
that copying is a shortcut and deleting and then inserting (or vice versa) results
in the same subproblem.

In the datatype we define to construct the table the cc constructor always
has three subtables, containing the calculations for the representing the d, i and
c subproblem.

The cn constructor represents the cells at the right border: the source has
been consumed completely and only deleting is possible. Analogous, the nc
constructor represents the cells at the bottom border, when only inserting is
possible. Both the cn and nc constructor keep track of one subproblem table.
The cell at the lower right is represented by the nn constructor, which does not
have to track any subproblem.

data DiffT : TypeIxs→ TypeIxs→ Set where
cc : { txs tys : TypeIxs} (ix : Ixs) (iy : Ixs) →

Diff (typeix ix :: txs) (typeix iy :: tys)→
DiffT (typeix ix :: txs) (fields iy ++ tys)→
DiffT (fields ix ++ txs) (typeix iy :: tys)→
DiffT (fields ix ++ txs) (fields iy ++ tys)→
DiffT (typeix ix :: txs) (typeix iy :: tys)

cn : { txs : TypeIxs} (ix : Ixs) →
Diff (typeix ix :: txs) [] →
DiffT (fields ix ++ txs) [] →
DiffT (typeix ix :: txs) []

nc : { tys : TypeIxs} (iy : Ixs) →
Diff [] (typeix iy :: tys)→
DiffT [] (fields iy ++ tys)→
DiffT [] (typeix iy :: tys)

nn : Diff [] [] →
DiffT [] []

35

Memoization 6.2 Trees

Each constructor also contains the actual Diff representing the (best) solution
for that cell. Having the Diff available at each cell allows us to easily extract the
solution from a table using a simple function:

getDiff : ∀ { txs tys} → DiffT txs tys→ Diff txs tys
getDiff (cc d) = d
getDiff (cn d) = d
getDiff (nc d) = d
getDiff (nn d) = d

6.2.2 Diffing

For the memoized diffing, we write a function with the following signature:

diffT : ∀ { txs tys} → µEnv txs→ µEnv tys→ DiffT txs tys

The structure of the diffT function is very similar to the structure of diff. The cases
where the source is empty (nc), the target is empty (cn), or both are empty (nn)
are easy because they have no or only one recursive call. The main difference
is in the cc case: instead of doing two or three recursive calls, we only make
one recursive call to calculate the c (from the picture above) and use its result to
extend the subsolution to the d and i. With all three subsolutions available, we
chose the best result to extract the Diff from.

The following picture illustrates the idea behind the diffT function. The gray
part of the block is the part of the table calculated by the function names shown
as the labels of the arrows.

extendi

extendd

best

The code for diffT seems simpler than the diff code, but much of the complex-
ity has moved to the extendi, extendd and best helper functions.

diffT { []} { []} [] [] =
nn end

diffT { tx :: } { []} (〈 cx , xs 〉 :: xss) [] =
let d = diffT (xs +++ xss) []
in cn (tx , cx) (del (tx , cx) (getDiff d)) d

diffT { []} { ty :: } [] (〈 cy , ys 〉 :: yss) =
let i = diffT [] (ys +++ yss)
in nc (ty , cy) (ins (ty , cy) (getDiff i)) i

diffT { tx :: } { ty :: } (〈 cx , xs 〉 :: xss) (〈 cy , ys 〉 :: yss) =
let c = diffT (xs +++ xss) (ys +++ yss)

i = extendi c

36

Memoization 6.2 Trees

d = extendd c
in cc (tx , cx) (ty , cy) (best i d c) i d c

The last case clearly shows how c is shared and used to calculate the i and d.
The best function selects the best diff, similarly to the algorithm before. The

cost of performing insertion and deletion is compared and the best operation is
selected; if the constructors are the same, copying is considered as well:

best : ∀ { txs tys tx ty} {cx : ConIx tx} {cy : ConIx ty} →
DiffT (tx :: txs) (fields (ty , cy) ++ tys)→
DiffT (fields (tx , cx) ++ txs) (ty :: tys)→
DiffT (fields (tx , cx) ++ txs) (fields (ty , cy) ++ tys)→
Diff (tx :: txs) (ty :: tys)

best { } { } { tx} { ty } {cx} {cy } i d c

with (tx , cx) ?=Ixs (ty , cy)
. . . | nothing = ins (ty , cy) (getDiff i)

u del (tx , cx) (getDiff d)
best { } { } { tx} { .tx} {cx} { .cx} i d c
| just refl = ins (tx , cx) (getDiff i)

u del (tx , cx) (getDiff d)
u cpy (tx , cx) (getDiff c)

The functions extendi and extendd take the shared part of the table and add
another column in front or row on top, respectively. We only show extendi – the
definition of extendd is analogous.

extendi : ∀ { txs tys tx} {cx : ConIx tx} →
DiffT (fields (tx , cx) ++ txs) tys→ DiffT (tx :: txs) tys

extendi { } { []} { tx} {cx} d =
cn (tx , cx) (del (tx , cx) (getDiff d)) d

extendi { } { ty :: } { tx} {cx} d = extracti d (λ cy c→
let i = extendi c
in cc (tx , cx) (ty , cy) (best i d c) i d c)

In case the target is empty there are no rows in the table – we are at the final row,
at the bottom of the table – so we can only have one subproblem table, thus we
use the cn and extend the diff with a del operation. However, if there are rows
in the table, we must add a cell to the left of each row, effectively extending the
table with a column. Those cells are cc cells (except the last one), therefore we
need three subtables, the d, i and c. The d was passed to the function. To get the
c, we use the function extracti that drops a row from the d table. By extending
that c table with a column (the recursive call), we get the i. Now we can build
the cell and use the function best to pick the best diff of all subproblems.

The extracti function, which drops a row from the table, has a simple imple-
mentation. Since we store the subproblems at each cell, we can simply get the
right subproblem. The type of the extracti function is more complex than its
implementation and dictates that the table can only be an nc or cc. In both cases,
the desired subtable is contained as a field of the constructor.

extracti : ∀ {R txs tys ty} →
DiffT txs (ty :: tys) →

37

Memoization 6.3 Discussion

((cy : ConIx ty)→
DiffT txs (fields (ty , cy) ++ tys)→ R)→ R

extracti (nc (, cy) i) k = k cy i
extracti (cc (, cy) i) k = k cy i

The extendd function (not shown) also has a extractd companion function,
analoguous to extracti.

6.3 Discussion

Although we have presented the memoization code in Agda, we do not use
this implementation in practice. Agda currently uses a call-by-name evaluation
strategy when executing code. When using the Haskell backend this strategy
causes the generated code in many cases to lose the carefully defined sharing.
In Chapter 9, we look at the Haskell implementation of diffT that is a bit more
involved, but does have a great performance increase compared to the Agda
version. Also, Haskell’s laziness helps to calculate only the parts of the table
that are actually required to determine the result of the problem.

38

Chapter 7

Extension: Constants

As we note in the discussion of the generic solution (Section 5.5) a useful
extension is to be able to use abstract types in the family of datatypes we use
for diffing and patching. Abstract types are types for which we do not know
or do not care to know the concrete structure. We do not consider the different
constructors for that type, but rather deal with values ‘as is’.

This chapter shows the code adaptations needed to encode abstract types in
our solution. Not all code of the module is shown, many pieces, such as the Env,
can remain unchanged. All code that has changed between modules is shown.

7.1 Codes

To be usable in patching and diffing, an abstract type must admit an equality
test. We therefore represent abstract types as a simple record, containing the
type and the equality test for that type.

record Abstract : Set where
field type : Set

decEq : Decidable { type} _≡_

The equality test is needed for the checks the diff and patch function perform
when comparing constructors. The equality test for constructors has to be
adapted which we show in Section 7.4.

Normally, a Set field is not allowed in a record of type Set, and we would
have to give Abstract the type Set1, the type of Set. However, Agda has a flag to
assume Set : Set, and we use it here to save the work of having to rewrite all
our other definitions.

We make the distinction between abstract and concrete types in the encoding
of types. By replacing the type synonym for Type with a datatype we can use
pattern matching to find out if a type is concrete or abstract.

data Type : Set where
concr : List Con→ Type
abstr : Abstract → Type

39

Extension: Constants 7.2 Interpretation

We illustrate the use of the new Type datatype with an example encoding
of a family with two datatypes: the abstract Char type and a concrete list-like
datatype for creating strings of characters.

First, we define readable names for the type indices.

charIx : TypeIx
charIx = zero

stringIx : TypeIx
stringIx = suc zero

We define the record for ‘char’ using the Char type and a function for decid-
able equality from the Data.Char library.

‘char’ : Type

‘char’ = abstr $ record { type = Char; decEq = ?=Char }

The encoding of the string datatype is the same as before, with the small
exception of having to use the concr constructor to create the Type from Lists of
Cons.

‘nil’ : Con
‘nil’ = []

‘cons’ : Con
‘cons’ = charIx :: stringIx :: []

‘string’ : Type
‘string’ = concr $ ‘nil’ :: ‘cons’ :: []

The definition of the Fam type is not changed, so we put the two type
encodings together in a vector to finish the encoding.

‘example’ : Fam
‘example’ = ‘char’ :: ‘string’ :: []

7.2 Interpretation

For the new Type code, we also need to adapt the interpretation function to
handle both cases. We create an interpretation module as before (Section 4.2.3).

module Interpretation (n : N) where
open Codes n

We define the interpretation of the new Type datatype also as a datatype

data TJ K { I : TypeIx→ Set} : Type→ Set where
« » : {T : Abstract} → Abstract.type T→ TJ abstr T K

, : {T : List Con} → (c : Fin (length T))
→ CJ lookup c (fromList T) K I → TJ concr T K

The Type interpretation datatype is parametrized by the interpretation func-
tion. In the constructor for abstract types we store the type from the Abstract

40

Extension: Constants 7.3 Edit script

record. For concrete types we mimic the dependent pair we used before (Sec-
tion 4.2.3). We also reuse the dependent pair constructor , so writing down
interpretations for (concrete) types does not change.

The CJ K and FJ K functions, remain almost unchanged from the definitions
in Section 4.2.3. Only the FJ K function has to be slightly adapted because
the interpretation function for TypeIx now has to passed as the first (implicit)
argument.

As an example, we use the codes from the ‘example’ family defined earlier in
this chapter to define the interpreted types.

Charµ = µ ‘example’ charIx
Stringµ = µ ‘example’ stringIx

For the concrete ‘string’, the definitions look similar to those defined in Chapter 4.

nilµ : Stringµ

nilµ = 〈 zero , [] 〉
consµ : Charµ → Stringµ → Stringµ

consµ c cs = 〈 suc zero , c :: cs :: [] 〉

Note that we have not named the constructor indices for ‘nil’ and ‘cons’ but
directly use values of Fin 2 (because there are two constructors in the ‘string’
encoding).

For abstract types we cannot create such functions as above, using only
interpretations of encodings. We need to use values of the type we encoded, in
this case Char, to construct values of the interpreted abstract type encoding.

charµ : Char→ Charµ

charµ c = 〈 « c » 〉

The charµ function is not really useful, as we can simply use Chars, e.g., to
define a function to add a Char to a Stringµ:

::c : Char→ Stringµ → Stringµ

::c c cs = consµ 〈 « c » 〉 cs

infixr 5 ::c
“moo„ = ’m’ ::c ’o’ ::c ’o’ ::c nilµ
“cow„ = ’c’ ::c ’o’ ::c ’w’ ::c nilµ

7.3 Edit script

The edit script has to undergo a couple of significant changes. We have to make
the distinction between concrete and abstract types at several places, which we
do by pattern matching on the constructors of the Type datatype. We start with
opening a module and writing helper functions.

module GenericDiff+Constants (F : Fam) where

ConType : Type→ Set

41

Extension: Constants 7.3 Edit script

ConType (concr T) = Fin (length T)
ConType (abstr T) = Abstract.type T

fields : (T : Type)→ ConType T→ TypeIxs
fields (concr T) c = lookup c (fromList T)
fields (abstr T) = []

The ConType function is similar to the ConIx function. However, for abstract
types the constructor is not an index, but a value of the abstract type. The fields
function for concrete types is as defined previously. For abstract type the result
of fields is always an empty list, since the constructors are already values.

For the Diff, we can no longer use Idx, and because finding the type of the
constructor index or value involves pattern matching, we split up the type index
and constructor arguments. To do lookup only once, we use a let in the type.

data Diff : TypeIxs→ TypeIxs→ Set where
ins : { txs tys : TypeIxs} (t : TypeIx) →

let T = lookup t F in (c : ConType T) →
Diff txs (fields T c ++ tys)→
Diff txs (t :: tys)

del : { txs tys : TypeIxs} → (t : TypeIx) →
let T = lookup t F in (c : ConType T) →
Diff (fields T c ++ txs) tys →
Diff (t :: txs) tys

cpy : { txs tys : TypeIxs} → (t : TypeIx) →
let T = lookup t F in (c : ConType T) →
Diff (fields T c ++ txs) (fields T c ++ tys)→
Diff (t :: txs) (t :: tys)

end : Diff [] []

Since the Diff datatype changed, we must also adapt patching and diffing func-
tions.

An example of the edit script, using the values “moo„ and “cow„ from the
example above, is listed below

cpy stringIx (suc zero)
$ del charIx ’m’
$ ins charIx ’c’
$ cpy stringIx (suc zero)
$ cpy charIx ’o’
$ cpy stringIx (suc zero)
$ del charIx ’o’
$ ins charIx ’w’
$ cpy stringIx zero
$ end

Note how all constructors of the Stringµ type are copied and only the abstract
characters change.

42

Extension: Constants 7.4 Patching

7.4 Patching

Previously, we could pattern match on the interpretations to get the constructor
(index) and a list of its arguments. Creating a interpreted value was also trivial:
we combined the constructor and the arguments in a pair and passed it to the
fixed-point function. Because we now have to deal with two different cases, we
abstract over applying and ‘unapplying’ constructors.

We apply both Env and the type interpretation function TJ K to the interpre-
tation function for the family this module was parameterized with (µ F), thereby
creating two helper functions to deal with interpretations: one for interpreting a
TypeIxs (similar to the result of fields) and one for interpreting a Type.

µEnv : TypeIxs→ Set
µEnv = Env (µ F)
µTJ K : Type→ Set
µTJ K = TJ K {µ F}

To define the apply function we pattern match on the (implicit) Type argument
to distinguish between abstract and concrete types.

apply : {T : Type} → (c : ConType T)→ µEnv (fields T c)→ µTJ T K
apply {abstr } c = « c »
apply {concr } c ts = c , ts

For the ‘unapply’ we define a view [31]. A view in Agda consists of a
datatype and a function. The datatype is used to define a view constructor, on
which we can pattern match to get our information, in this case the constructor
and the arguments. The function, unapply, takes the information the view needs
and constructs it.

data Unapply : (T : Type)→ µTJ T K→ Set where
, : {T : Type} → (c : ConType T)→ (ts : µEnv (fields T c))→

Unapply T (apply c ts)
unapply : (t : TypeIx)→ (e : µTJ lookup t F K)→ Unapply (lookup t F) e
unapply t e with lookup t F
unapply t (c , args) | concr = c , args
unapply t (« c ») | abstr = c , []

The type of patch stays the same

patch : { txs tys : TypeIxs} →
Diff txs tys→ µEnv txs→ Maybe (µEnv tys)

and the implementation only changes to incorporate the split of the type index
and constructor arguments

patch (ins t c d) ys = (insert t c � patch d) ys
patch (del t c d) ys = (patch d � delete t c) ys
patch (cpy t c d) ys = (insert t c � patch d � delete t c) ys
patch end [] = just []

The insert function caters to the new helper function, but most notably it
uses apply instead of the , constructor.

43

Extension: Constants 7.5 Diffing

insert : { ts : TypeIxs} → (t : TypeIx)→
let T = lookup t F in (c : ConType T)→ µEnv (fields T c ++ ts)→
Maybe (µEnv (t :: ts))

insert t c xss = splitEnv (fields (lookup t F) c) xss
(λ xs ys→ just (〈 apply c xs 〉 :: ys))

For delete, we need a new function to test the equality between constructors.

‖ ?= : (T : Type)→ (cx cy : ConType T)→ Maybe (cx ≡ cy)
(concr) ‖ cx

?= cy = cx
?=Fin cy

(abstr T) ‖ cx
?= cy with Abstract.decEq T cx cy

(abstr T) ‖ cx
?= .cx | yes refl = just refl

. . . | no = nothing

Again, we have to pattern match on a Type to be able to use the correct function
to test for equality.

We use unapply in a with pattern to be able to pattern match on the interpreted
value (we write ._, because unapply provides us with the values). The equality
test for the constructors uses the function defined previously.

delete : { ts : TypeIxs} → (t : TypeIx)→
let T = lookup t F in (c : ConType T)→ µEnv (t :: ts)→
Maybe (µEnv (fields T c ++ ts))

delete t c (〈 e 〉 :: xss) with unapply t e

delete t c (〈 ._ 〉 :: xss) | c′ , xs with lookup t F ‖ c
?= c′

delete t c (〈 ._ 〉 :: xss) | .c , xs | just refl = just (xs +++ xss)
delete t c (〈 ._ 〉 :: xss) | c′ , xs | nothing = nothing

7.5 Diffing

The diff function becomes a bit more verbose: the unapply is used in a with pattern.
Because the result of the unapply determines the interpretation, we need to
repeat it in the line below and cannot shorten it with ‘. . . ’. Another factor is
that we no longer can check if the constructors are the same, because we first
compare the types. We repeat the definition unequal constructors twice: once
for different types and once for equal types.

diff : ∀ { txs tys} → µEnv txs→ µEnv tys→ Diff txs tys

diff { []} { []} [] [] =
end

diff { tx :: } { []} (〈 ex 〉 :: xss) [] with unapply tx ex
diff { tx :: } { []} (〈 ._ 〉 :: xss) [] | cx , xs =

del tx cx (diff (xs +++ xss) [])
diff { []} { ty :: } [] (〈 ey 〉 :: yss) with unapply ty ey
diff { []} { ty :: } [] (〈 ._ 〉 :: yss) | cy , ys =

ins ty cy (diff [] (ys +++ yss))
diff { tx :: } { ty :: } (〈 ex 〉 :: xss) (〈 ey 〉 :: yss)

44

Extension: Constants 7.6 Discussion

with unapply tx ex | unapply ty ey
diff { tx :: } { ty :: } (〈 ._ 〉 :: xss) (〈 ._ 〉 :: yss)
| cx , xs | cy , ys with tx

?=Fin ty
. . . | nothing =

ins ty cy (diff (〈 apply cx xs 〉 :: xss) (ys +++ yss))
u del tx cx (diff (xs +++ xss) (〈 apply cy ys 〉 :: yss))

diff { tx :: } { .tx :: } (〈 ._ 〉 :: xss) (〈 ._ 〉 :: yss)
| cx , xs | cy , ys | just refl with lookup tx F ‖ cx

?= cy
. . . | nothing =

ins tx cy (diff (〈 apply cx xs 〉 :: xss) (ys +++ yss))
u del tx cx (diff (xs +++ xss) (〈 apply cy ys 〉 :: yss))

diff { tx :: } { .tx :: } (〈 ._ 〉 :: xss) (〈 ._ 〉 :: yss)
| cx , xs | .cx , ys | just refl | just refl =

ins tx cx (diff (〈 apply cx xs 〉 :: xss) (ys +++ yss))
u del tx cx (diff (xs +++ xss) (〈 apply cx ys 〉 :: yss))
u cpy tx cx (diff (xs +++ xss) (ys +++ yss))

While the diff is less good looking now, adding constants to our solution
makes it closer to being useful in practice. In the Haskell version (Chapter 9)
we have a slightly different solution for constants due to the way types are
encoded.

7.6 Discussion

It is important that the interpretation of the Type code datatype is also defined
as a datatype. If we use a function, we lose the distinction between concrete
and abstract types at this point and run into trouble later when trying to pattern
match on interpretation values.

45

Chapter 8

Extension: Compression

When comparing two data structures we are often mostly interested in the
differences. For example, in practice, when comparing two revisions of a source
code file, the number of differences is relatively small compared to the amount
of code that remains unchanged. The output format of UNIX’s diff leaves
out the parts that are unchanged, except for some lines around the changes.
Those lines offer a context to UNIX’s patch and help it find the lines that must
be changed even if the source file is not exactly the same as the one used to
calculate the edit script.

The goal of the compression extension described in this chapter is to create
smaller edit scripts by compressing parts that are the same in both the source
and target value. It is not necessary to leave some parts as the context: our edit
scripts are type-safe, so we have guarantees that the right parts are changed.
Furthermore, our patch function does not have the heuristics to offer the robust-
ness against small changes in the source value that UNIX’s patch does. A more
robust patch function is discussed in Section 10.1, future work.

The code in this chapter is an adaptation of the code presented in Chapter 5.
While we can also apply the compression to the patches presented in Chapter 7,
we do not incorporate the constants extension, to keep the code simpler. In
the Haskell version in Chapter 9 we show a version of the algorithms using all
extensions.

We implement compression by creating an alternative Diff datatype and do
the compression as a post-processing step on the result of diff. This way, we do
not have to adapt the diff algorithm.

8.1 Example

Consider again the example family used in Section 5.1; the full encoding of this
family can be found in Appendix B.

If we call diff on the source expression mulµ twoµ oneµ and target expression
negµ (mulµ twoµ oneµ) the result is the following edit script:

ins (termIx , negIx) $
cpy (termIx , mulIx) $
cpy (termIx , twoIx) $

46

Extension: Compression 8.2 Edit Script

cpy (exprIx , oneIx) $
end

Since the mul twoµ oneµ part of the expression did not change, we have an
opportunity for compression, as we can copy this complete subexpression,
replacing three cpy operations by one cpyAll operation:

ins (termIx , negIx) $
cpyAll termIx $
end

The information the cpyAll operation needs takes the TypeIx of the encoding
of the type as an argument. We do not save the constructor index, it is not
necessary.

8.2 Edit Script

To support compression we need to extend the edit script datatype with the
cpyAll operation.

data Diff : TypeIxs→ TypeIxs→ Set where
. . .
cpyAll : { txs tys : TypeIxs} → (t : TypeIx)→

Diff txs tys →
Diff (t :: txs) (t :: tys)

The type of the cpyAll construct is simpler than the other constructors, since we
do not need any type functions, e.g. to refer to the fields.

8.3 Compressing

The compress function takes a Diff and returns a Diff of the same type as a result.

compress : { txs tys : TypeIxs} → Diff txs tys→ Diff txs tys

The edit script is compressed recursively. In case we find a cpy operation we
first compress the rest of the edit script and then use the copied function to check
if the result of the recursive call also was compression. The result of the copied
function is either nothing or the Diff with all operation for the subtree stripped
off, so we can replace them with a cpyAll operation.

compress (cpy i d) with compress d
. . . | d′ with copied (fields i) d′

. . . | nothing = cpy i d′

. . . | just d′′ = cpyAll (typeix i) d′′

In all other cases we simply continue recursively with the compression.

compress (del i d) = del i (compress d)
compress (ins i d) = ins i (compress d)

47

Extension: Compression 8.4 Patching and diffing

compress (cpyAll t d) = cpyAll t (compress d)
compress end = end

The copied function uses a similar technique as the splitEnv function from
Section 5.3.1: we pass a list of type indices for the fields which we use to check
exactly the part of the Diff that contains the operations for those fields.

copied : { txs tys : TypeIxs} → (tzs : TypeIxs)→
Diff (tzs ++ txs) (tzs ++ tys)→ Maybe (Diff txs tys)

copied [] ds = just ds
copied (tz :: tzs) (cpyAll .tz d) = copied tzs d
copied (tz :: tzs) = nothing

Because compression happens recursively before the check with copied is per-
formed, we only need to check for cpyAll. A subexpression can only be com-
pressed if all its arguments are also compressed.

8.4 Patching and diffing

For patching, the type can stay unchanged but we need to add a case for the
cpyAll constructor.

patch : { txs tys : TypeIxs} →
Diff txs tys→ µEnv txs→ Maybe (µEnv tys)

patch . . . [] = just []
patch (cpyAll t d) (y :: ys) = :: y 〈$〉 patch d ys

The code is simpler than for the normal operations, since we do not get the
fields from the interpretation and do not check constructors for equality.

The 〈$〉 operator is a functor operation. For this specific case it can also be
defined as:

〈$〉 : {A B : Set} → (A→ B)→ Maybe A→ Maybe B
f 〈$〉 (just x) = just (f x)
〈$〉 nothing = nothing

For diffing, we do not need to adapt the algorithm itself, but do have to
add the cpyAll constructor to the cost function. This addition is only needed
to complete the definition of cost, the diff function does not produce cpyAll
operations.

cost : { txs tys : TypeIxs} → Diff txs tys→N

cost . . . = 0
cost (cpyAll d) = 1 + cost d

8.5 Discussion

The compression functionality showed in this chapter is only a start. This work
can be extended in several ways, e.g., integrating the compression with the
diffing (which is not necessary if we use it in a lazy language).

48

Extension: Compression 8.5 Discussion

We can also extend the compression to ins and del. If we want to compress
ins operation, however, the insAll constructor must take an interpreted value as
an argument, which causes the edit script no longer to consist of only simple
indices.

The compression used by the UNIX diff for edit scripts requires patch to
search for the correct lines to patch. We do not have that ‘problem,’ but our
(uncompressed) edit scripts are also not as flexible and cannot deal with input
slightly different than expected. The compression of cpy operations also make
the edit script more flexible. We do not store or check if the constructor matches,
but only look at the type. The patch function using compressed edit scripts is
therefore more forgiving if the source has changed slightly, but still ensures type
safety.

49

Chapter 9

Haskell implementation

In this chapter we show the Haskell implementation of the algorithms presented
in the previous chapters. Haskell is not as suitable for programming with types
as Agda, and the techniques we use to do programming with dependent types
in Haskell make the code a bit more complex than the code of the previous
chapters. Another factor increasing the complexity of the Haskell code is that
we combine the work of all previous chapters into a single implementation.

The reason we create a Haskell implementation is that it makes the algo-
rithms useful in practice: we can compile it to efficient executable code and
we can use available libraries to offer datatypes, e.g., abstract syntax, to define
specific instances of our algorithms. By making our algorithms available as a
library too, they can also be used in other applications.

9.1 Universe

The universe in Haskell differs from the universe we used in Agda. In Haskell
we cannot calculate types from codes, so we keep the types as a part of the
codes, using a GADT. Having the types available in the encoding also makes
our interpretation easier, as we can recreate values of the exact type. In Agda,
our interpretation of the codes was isomorphic to the datatypes, not identical.

We explain the steps and types involved in building the universe with an
example. Our family consists of two datatypes we define ourselves and of Int:

data Expr = Min Expr Term
data Term = Parens Expr

| Number Int

First, we define a GADT that captures the structure of the family. Each
constructor in the family is encoded as a constructor in the GADT. The GADT
for the family looks as follows:

data ExampleFamily :: ∗ → ∗ → ∗ where
‘Min’ :: ExampleFamily Expr (Cons Expr (Cons Term Nil))
‘Parens’ :: ExampleFamily Term (Cons Expr Nil)
‘Number’ :: ExampleFamily Term (Cons Int Nil)
‘Int’ :: Int→ ExampleFamily Int Nil

50

Haskell implementation 9.1 Universe

We use type level lists to capture the types of the fields of each constructor, using
two separate datatypes as the constructors.

data Nil = Nil
data Cons x xs = Cons x xs

As Int is an abstract type in the family, we define the ‘Int’ code as a constructor
that expects an actual value.

The next step is to make the GADT an instance of a class Family that provides
several generic functions that we can need to define the generic diff algorithm.
The Family class is defined as:

class Family f where
decEq :: f tx txs→ f ty tys→ Maybe (tx:=:ty, txs:=:tys)
fields :: f t ts→ t→ Maybe ts
apply :: f t ts→ ts→ t
string :: f t ts→ String

The decEq corresponds to the ?=Ixs function from Section 5.4; however, we do
not compare indices, but actual types. The proofs we return use the equality
GADT:

data a:=:b where
Refl :: a:=:a

The definition of :=: assures that if we write Refl, a and b are of the same type, or
else the type checker will complain.

The fields function tries to match an encoded constructor with the actual
constructor (of the same type). If it succeeds, it returns the fields of the matched
constructor.

The inverse function of fields is apply, which applies the actual constructor,
given an encoding of that constructor, to a list of fields.

The string function is a simple show for the GADT, allowing us to show a
string representation for each constructor, to be able to inspect edit scripts.

Defining the instance of Family for ExampleFamily is straightforward.

instance Family ExampleFamily where
decEq ‘Min’ ‘Min’ = Just (Refl, Refl)
decEq ‘Parens’ ‘Parens’ = Just (Refl, Refl)
decEq ‘Number’ ‘Number’ = Just (Refl, Refl)
decEq (‘Int’ x) (‘Int’ y) | x == y = Just (Refl, Refl)

| otherwise = Nothing
decEq _ _ = Nothing

fields ‘Min’ (Min e t) = Just (Cons e (Cons t Nil))
fields ‘Parens’ (Parens e) = Just (Cons e Nil)
fields ‘Number’ (Number i) = Just (Cons i Nil)
fields (‘Int’ _) _ = Just Nil
fields _ _ = Nothing

apply ‘Min’ (Cons e (Cons t Nil)) = Min e t
apply ‘Parens’ (Cons e Nil) = Parens e
apply ‘Number’ (Cons i Nil) = Number i

51

Haskell implementation 9.1 Universe

apply (‘Int’ i) Nil = i

string ‘Min’ = "Min"
string ‘Parens’ = "Parens"
string ‘Number’ = "Number"
string (‘Int’ i) = show i

The cases for handling the abstract Int type are different from the rest. The decEq
function also needs to check the actual value, the fields function always matches,
the apply function extracts the value and the string function uses the normal
show.

The third and last step in encoding a family in our universe is to create
an instance of the class Type for each type in family. Using the type class Type
allows us to get just the constructors for a specific type from the family GADT.

class (Family f)⇒ Type f t where
constructors :: [Con f t]

In the Agda version, we used the Fam type, which is a vector of type encodings.
Using a TypeIx we can get all the constructors of a certain type. Because we now
put all constructors together in the same GADT, we need the Type class to be
able to separate them again.

The datatype Con wraps the representation GADT such that the type of the
fields of the constructor is hidden, so we can put the fields together in a (normal)
list.

data Con :: (∗ → ∗ → ∗)→ ∗ → ∗ where
Concr :: (List f ts) ⇒ f t ts → Con f t
Abstr :: (Eq t, List f ts)⇒ (t→ f t ts)→ Con f t

Here we also make the separation between concrete and abstract types. The
Concr constructor is used for concrete encodings, the Abstr constructor packs a
function that expects a value of the encoded type and wraps it into an encoding
for family f.

instance Type ExampleFamily Term where
constructors = [Concr ‘Number’, Concr ‘Parens’]

instance Type ExampleFamily Expr where
constructors = [Concr ‘Min’]

instance Type ExampleFamily Int where
constructors = [Abstr ‘Int’]

Note that for abstract types, the constructors function always is a singleton with
an Abstr wrapping the encoding constructor from the family GADT.

The List class used in the types of Con’s constructors restricts the value of ts
to a list of Nil and Cons containing only elements that are types in the family f.

class List f ts where
list :: IsList f ts

List uses the IsList GADT as the type of its only function.

52

Haskell implementation 9.2 Edit script

data IsList :: (∗ → ∗ → ∗)→ ∗ → ∗ where
IsNil :: IsList f Nil
IsCons :: (Type f t)⇒ IsList f ts→ IsList f (Cons t ts)

IsList has two constructors that restrict the types ts to the type list constructors,
Nil and Cons. The List class has two instances, one for each ‘constructor’:

instance List f Nil where
list = IsNil

instance (Type f t, List f ts)⇒ List f (Cons t ts) where
list = IsCons list

The List class and IsList datatype mimic the Env datatype we defined in Sec-
tion 4.2.1 of the Agda implementation

Note that all generic functions in the Haskell library are parameterized
by the family. In Agda, we can use a parameterized module to make the
family available to all functions (in that module). Unfortunately, parameterized
modules are not supported in Haskell, so we have to pass the family around
explicitly.

As a real-life example of how to use the universe defined above, we created
a JSON [11] example in Appendix C

9.2 Edit script

The Diff datatype looks very similar to the Agda version. We do need to use
several class constraints to assure the types working with Diff can pattern match
on the heterogeneous lists and detect the constructors for the given type.

data Diff :: (∗ → ∗ → ∗)→ ∗ → ∗ → ∗ where
Ins :: (Type f t, List f ts, List f tys)⇒ f t ts→

Diff f txs (Append ts tys) →
Diff f txs (Cons t tys)

Del :: (Type f t, List f ts, List f txs) ⇒ f t ts→
Diff f (Append ts txs) tys →
Diff f (Cons t txs) tys

Cpy :: (Type f t, List f ts, List f txs, List f tys)⇒ f t ts→
Diff f (Append ts txs) (Append ts tys) →
Diff f (Cons t txs) (Cons t tys)

CpyTree :: (Type f t, List f txs, List f tys)⇒
Diff f txs tys →
Diff f (Cons t txs) (Cons t tys)

End :: Diff f Nil Nil

Note that we also made CpyTree available in Diff, to be able to compress the Diff.
The Append type is a type function to concatenate type-level lists, encoded

in Haskell as a type family:

type family Append txs tys :: ∗
type instance Append Nil tys = tys
type instance Append (Cons tx txs) tys = Cons tx (Append txs tys)

53

Haskell implementation 9.3 Patching

To concatenate the values of lists we have two functions, using Append. The
appendList function builds a new IsList value. The append function uses the IsList
constructors to do pattern matching on the actual values to be append.

appendList :: IsList f txs→ IsList f tys→ IsList f (Append txs tys)
appendList IsNil isys = isys
appendList (IsCons isxs) isys = IsCons (appendList isxs isys)
append :: IsList f txs→ IsList f tys→ txs→ tys→ Append txs tys
append IsNil _ Nil ys = ys
append (IsCons isxs) isys (Cons x xs) ys = Cons x (append isxs isys xs ys)

Note that we cannot pattern match on values of the List class unless we also
have the IsList value for that list.

Using the string function from the Family class, we can now define a simple
instance of Show for the edit script, so we can print it for inspection.

instance Show (Diff f txs tys) where
show (Ins c d) = "Ins "++string c++" $ "++show d
show (Del c d) = "Del "++string c++" $ "++show d
show (Cpy c d) = "Cpy "++string c++" $ "++show d
show (CpyTree d) = "CpyTree" ++" $ "++show d
show End = "End"

9.3 Patching

Not only the definition of the edit script, but also the definition of the patch
function in Haskell is very similar to the definition in Agda, presented in
Chapter 2.

patch :: ∀f txs tys.Diff f txs tys→ txs→ tys
patch (Ins c d) = insert c ◦ patch d
patch (Del c d) = patch d ◦ delete c
patch (Cpy c d) = insert c ◦ patch d ◦ delete c
patch (CpyTree d) = λ(Cons x xs)→ Cons x ◦ patch d $ xs

Note that the patch function is partial, as is the patch function in Agda, but we
do not use a Maybe to catch an invalid patch but rather throw an exception,
either because the pattern matching fails, or explicitly, as demonstrated in the
delete function:

delete :: (Type f t, List f ts, List f txs)⇒ f t ts→ Cons t txs→ Append ts txs
delete c (Cons x xs) =

case fields c x of
Nothing→ error "Patching failed"
Just ts → append (isList c) list ts xs

The fields function from the Family class checks if the value matches the encoding
of the constructor in c.

The isList function is a helper that provides easy access to the IsList value of
the fields list of the argument passed, which we need for appending.

54

Haskell implementation 9.4 Diffing

isList :: (Family f, List f ts)⇒ f t ts→ IsList f ts
isList _ = list

In the insert case we use the apply function to get the constructor function
from the encoding and apply it to the encoded fields list.

insert :: (Type f t, List f ts, List f txs)⇒ f t ts→ Append ts txs→ Cons t txs
insert c xs = Cons (apply c txs) tys

where (txs, tys) = split (isList c) xs

The split function is used to split the fields for the constructor off the stack,
as splitEnv did in the Agda implementation in Section 5.3.1

split :: IsList f txs→ Append txs tys→ (txs, tys)
split IsNil ys = (Nil, ys)
split (IsCons isxs) (Cons x xsys) = let (xs, ys) = split isxs xsys

in (Cons x xs, ys)

9.4 Diffing

In contrast to the patch function above, defining diff in Haskell requires a bit
more effort. The two main reasons for that are that we need to use IsList to be
able to do pattern matching and that we need to define a function that matches
the encoding with the actual value.

We use the fields function of the type class Family in combination with the
constructors function of the type class Type to restrict the encodings we need to
try when matching. We still have to iterate over all possible constructors in a
type, though.

The matchConstructor function takes a value of type t and a continuation that
is applied to the representation f t cs of the constructor that matches t and the
fields of that constructor ts.

matchConstructor :: (Type f t)⇒ t→
(∀ts.f t ts→ IsList f ts→ ts→ r)→ r

matchConstructor = tryEach constructors
where

tryEach :: (Type f t)⇒ [Con f t]→ t→
(∀ts.f t ts→ IsList f ts→ ts→ r)→ r

tryEach (Concr c : cs) x k = matchOrRetry c cs x k
tryEach (Abstr c : cs) x k = matchOrRetry (c x) cs x k
tryEach [] _ _ = error "Incorrect Family or Type instance."
matchOrRetry :: (List f ts, Type f t)⇒ f t ts→ [Con f t]→ t→

(∀ts.f t ts→ IsList f ts→ ts→ r)→ r
matchOrRetry c cs x k = case fields c x of

Just ts → k c (isList c) ts
Nothing→ tryEach cs x k

We show the implementation of the diff function to introduce several concepts
we use in the Haskell implementation. In practice, this definition of diff is not

55

Haskell implementation 9.4 Diffing

used in favor of the more efficient diffT implementation which is also shown, in
Section 9.6.

The type of the diff function is still simple, but its implementation relies on
the IsList constructors to guide the pattern matching on the source and target
lists and is given in the function diff’.

diff :: (Family f, List f txs, List f tys)⇒ txs→ tys→ Diff f txs tys
diff = diff’ list list

The cases where both or either the source and target lists are empty are
relatively simple.

diff’ :: (Family f)⇒ IsList f txs→ IsList f tys→ txs→ tys→ Diff f txs tys

diff’ IsNil IsNil Nil Nil =
End

diff’ (IsCons isxs) IsNil (Cons x xs) Nil =
matchConstructor x

(λcx isxs’ xs’→
del isxs’ isxs cx

(diff’ (appendList isxs’ isxs) IsNil
(append isxs’ isxs xs’ xs) Nil))

diff’ IsNil (IsCons isys) Nil (Cons y ys) =
matchConstructor y

(λcy isys’ ys’→
ins isys’ isys cy

(diff’ IsNil (appendList isys’ isys)
Nil (append isys’ isys ys’ ys)))

Note the functions del and ins that are used instead of the constructors Del and
Ins. The del and ins functions use the IsList values to reify the type classes the
Del and Ins constructor require. Their implementation is explained at the end of
this section.

Next, we look at the case when both source and target contain items. We
already calculate the recursive cases, but delegate the decision for the best
operation to bestDiff.

diff’ (IsCons isxs) (IsCons isys) (Cons x xs) (Cons y ys) =
matchConstructor x

(λcx isxs’ xs’→
matchConstructor y
(λcy isys’ ys’→

let c = diff’ (appendList isxs’ isxs) (appendList isys’ isys)
(append isxs’ isxs xs’ xs) (append isys’ isys ys’ ys)

d = diff’ (appendList isxs’ isxs) (IsCons isys)
(append isxs’ isxs xs’ xs) (Cons y ys)

i = diff’ (IsCons isxs) (appendList isys’ isys)
(Cons x xs) (append isys’ isys ys’ ys)

in bestDiff cx cy isxs’ isxs isys’ isys i d c))

Lazyness allows us to already write the recursive diff’ for when we can copy, but
we do not have to worry about it being executed unless we need it.

56

Haskell implementation 9.4 Diffing

Finally, the bestDiff function uses the information of the decEq function to
decide whether the cpy operation is applicable and uses best to pick the best
solution.

bestDiff :: (Type f tx, Type f ty)⇒ f tx txs’→ f ty tys’→
IsList f txs’→ IsList f txs→ IsList f tys’→ IsList f tys→
Diff f (Cons tx txs) (Append tys’ tys)→
Diff f (Append txs’ txs) (Cons ty tys)→
Diff f (Append txs’ txs) (Append tys’ tys)→
Diff f (Cons tx txs) (Cons ty tys)

bestDiff cx cy isxs’ isxs isys’ isys i d c = case decEq cx cy of
Just (Refl, Refl)→ best (cpy isxs’ isxs isys cx c) $

best (del isxs’ isxs cx d)
(ins isys’ isys cy i)

Nothing → best (del isxs’ isxs cx d)
(ins isys’ isys cy i)

The best function returns the shortest edit script. We calculate the length of
the diff as a Peano natural, Nat, to be able to use lazy comparison.

best :: Diff f txs tys→ Diff f txs tys→ Diff f txs tys
best dx dy = bestSteps (steps dx) dx (steps dy) dy

data Nat = Zero | Succ Nat
deriving (Eq, Show)

steps :: Diff f txs tys→ Nat
steps (Ins _ d) = Succ $ steps d
steps (Del _ d) = Succ $ steps d
steps (Cpy _ d) = Succ $ steps d
steps End = Zero

bestSteps :: Nat→ d→ Nat→ d→ d
bestSteps Zero x _ _ = x
bestSteps _ _ Zero y = y
bestSteps (Succ nx) x (Succ ny) y = bestSteps nx x ny y

Note that we do not include a case for CpyTree in steps. Unlike Agda, Haskell
allows us to leave out cases when implementing a function. This feature allows
us to be more succinct in the cases when we can easily outsmart the compiler.

The final piece of the puzzle is to define the ins, del and cpy functions. These
functions exist to get rid of the IsList witnesses and reinstantiate the List class
constraint for the constructors of the edit script.

We define the datatype RList. Its only constructor, RList, uses the List class
constraint. Companioned by the function reify, which turns an IsList into an
RList, we can convince Haskell’s type checker that the List class constraint is
applicable.

data RList :: (∗ → ∗ → ∗)→ ∗ → ∗ where
RList :: List f ts⇒ RList f ts

reify :: IsList f ts→ RList f ts
reify IsNil = RList
reify (IsCons ists) = case reify ists of

RList→ RList

57

Haskell implementation 9.5 Compression

The actual definitions of ins, del and cpy are not interesting, so we only show
ins:

ins :: (Type f t)⇒ IsList f ts→ IsList f tys→
f t ts→ Diff f txs (Append ts tys)→ Diff f txs (Cons t tys)

ins ists isys =
case (reify ists, reify isys) of

(RList, RList)→ Ins

We also use the trick to provide functions for the constructors of the table
datatype used by diffT in Section 9.6, on memoization.

9.5 Compression

The algorithm for compression, replacing expressions that are fully Cpy’d by a
CpyTree, is very similar to the one in Agda, defined in Chapter 8.

compress :: (Family f)⇒ Diff f txs tys→ Diff f txs tys
compress End = End
compress (Ins c d) = Ins c (compress d)
compress (Del c d) = Del c (compress d)
compress (CpyTree d) = CpyTree (compress d)
compress (Cpy c d) = let d’ = compress d in

case copied (isList c) d’ of
Just d” → CpyTree d”
Nothing→ Cpy c d’

copied :: (Family f)⇒ IsList f ts→
Diff f (Append ts txs) (Append ts tys)→ Maybe (Diff f txs tys)

copied IsNil d = Just d
copied (IsCons xs) (CpyTree d) = copied xs d
copied (IsCons _) _ = Nothing

9.6 Memoization

The implementation of memoization in Haskell does not add new concepts,
neither compared to the code above nor to the definition from Agda in Chap-
ter 6. We highlight a few subtle differences, but mostly show the code for
completeness.

9.6.1 Table datatype

The DiffT datatype describes the memoization table.

data DiffT :: (∗ → ∗ → ∗)→ ∗ → ∗ → ∗ where
CC :: (Type f tx, Type f ty, List f txs’, List f tys’)⇒

f tx txs’→ f ty tys’→
Diff f (Cons tx txs) (Cons ty tys)→
DiffT f (Cons tx txs) (Append tys’ tys)→

58

Haskell implementation 9.6 Memoization

DiffT f (Append txs’ txs) (Cons ty tys) →
DiffT f (Append txs’ txs) (Append tys’ tys)→
DiffT f (Cons tx txs) (Cons ty tys)

CN :: (Type f tx, List f txs’)⇒ f tx txs’→
Diff f (Cons tx txs) Nil→
DiffT f (Append txs’ txs) Nil→
DiffT f (Cons tx txs) Nil

NC :: (Type f ty, List f tys’)⇒ f ty tys’→
Diff f Nil (Cons ty tys)→
DiffT f Nil (Append tys’ tys)→
DiffT f Nil (Cons ty tys)

NN :: Diff f Nil Nil→
DiffT f Nil Nil

9.6.2 Diffing

The diffT function calculates the DiffT table

diffT :: (Family f, List f txs, List f tys)⇒ txs→ tys→ DiffT f txs tys
diffT = diffT’ list list

diffT’ :: (Family f)⇒ ∀txs tys.IsList f txs→ IsList f tys→
txs→ tys→ DiffT f txs tys

diffT’ IsNil IsNil Nil Nil =
NN End

diffT’ (IsCons isxs) IsNil (Cons x xs) Nil =
matchConstructor x

(λcx isxs’ xs’→
let d = diffT’ (appendList isxs’ isxs) IsNil

(append isxs’ isxs xs’ xs) Nil
in cn isxs’ isxs cx (del isxs’ isxs cx (getDiff d)) d)

diffT’ IsNil (IsCons isys) Nil (Cons y ys) =
matchConstructor y

(λcy isys’ ys’→
let i = diffT’ IsNil (appendList isys’ isys)

Nil (append isys’ isys ys’ ys)
in nc isys’ isys cy (ins isys’ isys cy (getDiff i)) i)

diffT’ (IsCons isxs) (IsCons isys) (Cons x xs) (Cons y ys) =
matchConstructor x

(λcx isxs’ xs’→
matchConstructor y
(λcy isys’ ys’→

let c = diffT’ (appendList isxs’ isxs) (appendList isys’ isys)
(append isxs’ isxs xs’ xs) (append isys’ isys ys’ ys)

d = extendd isys’ isys cy c
i = extendi isxs’ isxs cx c

in cc isxs’ isxs isys’ isys cx cy
(bestDiffT cx cy isxs’ isxs isys’ isys i d c) i d c))

from which the resulting Diff can be extracted:

59

Haskell implementation 9.6 Memoization

getDiff :: DiffT f txs tys→ Diff f txs tys
getDiff (CC _ _ d _ _ _) = d
getDiff (CN _ d _) = d
getDiff (NC _ d _) = d
getDiff (NN d) = d

The bestDiffT function is similar to the bestDiff function and selects the best
Diff from the three recursive solutions.

bestDiffT :: (Type f tx, Type f ty)⇒ f tx txs’→ f ty tys’→
IsList f txs’→ IsList f txs→ IsList f tys’→ IsList f tys→
DiffT f (Cons tx txs) (Append tys’ tys)→
DiffT f (Append txs’ txs) (Cons ty tys) →
DiffT f (Append txs’ txs) (Append tys’ tys)→
Diff f (Cons tx txs) (Cons ty tys)

bestDiffT cx cy isxs’ isxs isys’ isys i d c = case decEq cx cy of
Just (Refl, Refl)→ cpy isxs’ isxs isys cx (getDiff c)
Nothing→ best (ins isys’ isys cy (getDiff i))

(del isxs’ isxs cx (getDiff d))

The function extendi (and similarly, the function extendd) use pattern match-
ing on the table datatype. In Agda, we used pattern matching on the lists, but
Haskell’s type checker does not allow that, as pattern matching makes the type
txs or txs’ ‘rigid’.

extendi :: (Type f tx)⇒ IsList f txs’→ IsList f txs→ f tx txs’→
DiffT f (Append txs’ txs) tys’→
DiffT f (Cons tx txs) tys’

extendi isxs’ isxs cx dt@(NN d) = cn isxs’ isxs cx (del isxs’ isxs cx d) dt
extendi isxs’ isxs cx dt@(CN _ d _) = cn isxs’ isxs cx (del isxs’ isxs cx d) dt
extendi isxs’ isxs cx dt@(NC _ _ _) = extendi’ isxs’ isxs cx dt
extendi isxs’ isxs cx dt@(CC _ _ _ _ _ _) = extendi’ isxs’ isxs cx dt

extendi’ :: (Type f tx, Type f ty)⇒ IsList f txs’→ IsList f txs→ f tx txs’→
DiffT f (Append txs’ txs) (Cons ty tys)→
DiffT f (Cons tx txs) (Cons ty tys)

extendi’ isxs’ isxs cx dt =
extracti dt (λisys’ isys cy dt’→

let i = extendi isxs’ isxs cx dt’
d = dt
c = dt’

in cc isxs’ isxs isys’ isys cx cy
(bestDiffT cx cy isxs’ isxs isys’ isys i d c)
i d c)

From the Agda implementation we know that we only need to implement
two cases for extracti:

extracti :: (Type f ty)⇒ DiffT f txs’ (Cons ty tys)→
(∀tys’.IsList f tys’→ IsList f tys→ f ty tys’→
DiffT f txs’ (Append tys’ tys)→ r)→ r

extracti (CC _ c d i _ _) k = k (isList c) (targetTail d) c i
extracti (NC c d i) k = k (isList c) (targetTail d) c i

60

Haskell implementation 9.7 Discussion

The targetTail helper function retrieves the IsList of the extracted value.

targetTail :: Diff f txs (Cons ty tys)→ IsList f tys
targetTail (Ins _ d) = list
targetTail (Del _ d) = targetTail d
targetTail (Cpy _ _) = list

For nc, cn and cc we use the trick with RList and reify once more:

nc :: (Type f t)⇒ IsList f ts→ IsList f tys→
f t ts→ Diff f Nil (Cons t tys)→
DiffT f Nil (Append ts tys)→ DiffT f Nil (Cons t tys)

nc ists isys =
case (reify ists, reify isys) of

(RList, RList)→ NC

9.7 Discussion

Looking at the example from the start of the chapter and also Appendix C we can
see there is a lot of boilerplate code that needs to be written in order to instantiate
the encoding of the family. Because all the code is straightforward, it could be
automatically generated given the syntax tree of the datatype definitions, using
a preprocessor or a meta-programming library such as Template Haskell [29].

A shortcoming of the definitions presented in this chapter is that the family is
closed, because we defined its encoding in a single datatype. We can not, as we
can with the Agda definitions, where a family encoding is a vector, easily take
an existing family encoding and (programmatically) extend it. Furthermore, we
can not encode polymorphic datatypes such as lists, but need to write specific
encodings for each type we want to include.

61

Chapter 10

Conclusion

In this thesis I have presented how to go from a simple algorithm for diffing lists
to an algorithm for trees that we subsequently used for the main contribution
of this thesis: diffing and patching datatypes generically while ensuring type-
safety. I showed a few extensions to the algorithm and demonstrated how the
algorithms are implemented in Agda and Haskell. Another major contribution
is that we implemented memoization for our type-safe algorithms. This required
us to build a special memoization table datatype where not only the value in a
cell but also the type of a cell depends on other cells.

10.1 Related and future work

The only work (of which we are aware) that comes close to being a generic diff
in a functional programming language is from Piponi [25, 26] on antidiagonals.
The antidiagonal is a construct carrying a pair of provably distinct values of
the same type. A value of the antidiagonal contains information about the
source and the target value and can therefore be considered to be an edit script.
However, no effort is made to keep the script minimal or readable by humans.

There are several directions in which this work can be extended. An interest-
ing direction is to more closely look at the work by Chawathe and Garcia-Molina
on meaningful change detection in structured data [9]. Their work has a differ-
ent goal, more focused on the semantics of changes, which leads to completely
different trees, edit scripts and a heuristic algorithm to find the edit script. The
algorithm has to be heuristic, since the trees are unordered and calculating the
difference between two unordered trees is NP-Hard.

There are several questions that come to mind

• How do we define a typed edit script with operations such as swapping,
moving and updating? What is the minimal set of primitive operations
that can be used to express these operations?

• Can we implement the heuristic algorithm with the new, but still typed,
edit script? Will the extra type information hinder the implementation or
help it?

• Can we support partially unordered trees? Datatypes are inherently
ordered, but for some parts the ordering might not be important. For ex-

62

Conclusion 10.2 Acknowledgements

ample, in many programming languages lists are ordered, but dictionaries
are not.

For the minimal set of primitive operations, the work on lenses [12] by Foster
et al. [12] might be interesting. Lenses are combinators for bi-directional tree
transformations. Using a (combined) lens you can create a ‘view’ on piece of
data such that changes to that view can be translated back to the original data.
In a sense, interpreting a plain text file as structured data is taking a ‘view’ on it.
In our examples we did ignore all whitespace, but if we could use lenses and
calculate our patches on the ‘view’, we might be able to translate the patched
results back to plain text without loss of formatting.

On the practical side, there are also several aspects that need work. Making
the algorithms presented more suitable to be used as a library and reducing the
work a programmer has to do to be able to use this work is largely a software
engineering problem, but might also bring to light more fundamental problems.
The library could also be integrated in an application, e.g., a structured editor, a
version control system or a command line tool.

If we want to transfer the edit scripts, we need to be able to serialize them
to disk and read them while preserving the types. To a certain extent the
deserialization can be done using a simple parser, but the use of dependent
types might make reconstructing the value a non-trivial problem.

10.2 Acknowledgements

First and foremost, I would like to thank you, dear reader, for reading this thesis.
While writing a Master’s Thesis is an interesting and important exercise, I do
not have the illusion that a thesis is in general well-read, if read at all. Even if
you did not find what you are looking for, your interest in my work means a lot
to me.

I did not expect to learn so much in a year without taking any classes. Andres
has taught me a lot and I very much enjoyed working with him. I admire
his ability to clearly explain topics, making difficult things sound natural and
logical. He was not afraid to call my work poor, when it was, but also repeatedly
expressed his trust in my capabilities.

Sean’s calmness, perfectionism and (native) English skills impressed me.
Even under a looming deadline he keeps his cool and manages to deliver
excellent work. Although he was less involved than Andres in the daily matters,
he provided great help and without him my talks and this thesis would have
been less successful.

I thank Chris for being patient with me and covering for me by working
harder in and on our company at the times I was in crunch mode for this thesis
or a talk. I look forward to doing the same for him.

Last but not least, I thank the most patient, trusting and loving of all: Didy.
She is the absolute best at simply being there for me, which was all I needed.

63

Appendix A

Agda syntax for Haskellites

Agda [20] is a dependently typed programming language, using an extension
of Martin-Löf’s type theory. Agda’s syntax bears resemblance to Haskell [24],
making it easy to understand for people familiar with Haskell, but there are
subtle and not so subtle differences to keep in mind. This appendix lists the
most important differences and is intended to be both a fast introduction and a
reference for Agda (syntax) for Haskell programmers.

A.1 UTF-8

Agda fully supports UTF-8 and allows almost all characters to be used in
identifiers. For instance, the type for natural numbers, is N, one can write both
forall and ∀, etc. Most code in this thesis is therefore not the result of some fancy
formatting, but simply shows the richness of UTF-8.

Because almost all characters are allowed in identifiers, it is always necessary
to add spaces around operators. Parentheses and curly braces are special, and
cannot be used in identifiers and therefore also do not need extra spacing.

A.2 Colons

In Agda, an value identifier is separated from its type by a single colon.

fib : N→N

fib 0 = 1
fib 1 = 1
fib n = fib (n −̇ 1) + fib (n −̇ 2)

Double colons are (often) list constructors. There is no special syntax for
lists, only the two constructors [] and ::.

tail : ∀ {A} → List A→ List A
tail [] = []
tail (x :: xs) = xs

We have to write the ∀ {A}, in Haskell that is implied. Notice the curly braces?
Those are explained next.

64

Agda syntax for Haskellites A.3 Implicit arguments

A.3 Implicit arguments

Implicit arguments are written within curly braces. Without implicit arguments,
we define the function above as:

tail : ∀ A→ List A→ List A
tail A [] = []
tail A (x :: xs) = xs

The type argument for the list is now explicit, so we also need to pattern match
on it. The use of a type variable this way might be a bit mind boggling, since in
Haskell we can not mix types and values this way. In Agda we can!

A.4 Kinds and named type arguments

In Haskell the type of a type is called a kind and we only have one: ?. In Agda,
? is called Set, and we still call it a type.

In the above example, the type checker restricts A to Set, because List takes
an argument of type Set. We could also have written:

tail : {A : Set} → List A→ List A
tail [] = []
tail (x :: xs) = xs

The signature now reads as: given an implicit argument A of type Set and a List
of A, we produce a List of A. Note how we name the Set argument A, so that we
can use it for both Lists.

A.5 Underscores: infix, mixfix

Underscores are used as a pattern match wildcard (as in Haskell), but also in
identifiers, to indicate where arguments go. For example, an operator (infix
function) is defined as:

+ : N→N→N

zero + n = n
suc m + n = suc (m + n)

The reason Agda uses underscores when defining operators is that not only
infix function, but also postfix and even ‘mixfix’ function can be defined using
underscores. For example:

if then else : {A : Set} → Bool→ A→ A→ A
if true then t else f = t
if false then t else f = f

65

Agda syntax for Haskellites A.6 Constructors

A.6 Constructors

Constructors in Agda are usually written in lowercase, but that is not a restric-
tion. For example: just, nothing, true, false.

Constructors can be overloaded. For example, the constructors used for lists

data List (A : Set) : Set where
[] : List A

:: : (x : A) (xs : List A)→ List A

are also used for vectors:

data Vec (A : Set) : N→ Set where
[] : Vec A zero

:: : ∀ {n} (x : A) (xs : Vec A n)→ Vec A (suc n)

While overloading might seem confusing, it is generally useful in practice
because it is not necessary to create unique constructors for each datatype,
which might not even be used together. Agda can almost always infer the type
of the constructors from the context.

A.7 Dependent types

The Vec type above is a classic example of dependently typed programming.
The type of Vec depends on a value, a natural number representing the length
of the vector.

data Vec (A : Set) : N→ Set where
[] : Vec A zero

:: : ∀ {n} (x : A) (xs : Vec A n)→ Vec A (suc n)

Not only simple values are allowed in types, we can program in them just
as we normally do with values. For example:

concat : ∀ {A m n} → Vec (Vec A m) n→ Vec A (n ? m)
concat [] = []
concat (xs :: xss) = xs ++ concat xss

A.8 with syntax

Agda does not have guards but does have the with syntax, which is similar to
Haskell’s case . . . of

takeWhile : ∀ {A} → (A→ Bool)→ List A→ List A
takeWhile p [] = []
takeWhile p (x :: xs) with p x
takeWhile p (x :: xs) | true = x :: takeWhile p xs
takeWhile p (x :: xs) | false = []

Using with allows pattern matching on the result of a function call within a
function definition.

It is also possible to chain several withs, simply by separating each pattern
match with a bar (||).

66

Agda syntax for Haskellites A.9 Fin

A.8.1 . . .

Instead of repeating the left hand side of the with, we can also use the shorthand
. . . . The above definition can be rewritten as:

takeWhile : ∀ {A} → (A→ Bool)→ List A→ List A
takeWhile p [] = []
takeWhile p (x :: xs) with p x
. . . | true = x :: takeWhile p xs
. . . | false = []

In some cases we need to write the left hand side, because the with pattern
match gives us more information about variables in the left hand side. See the
next section for more details.

A.9 Fin

data Fin : N→ Set where
zero : {n : N} → Fin (suc n)
suc : {n : N} (i : Fin n)→ Fin (suc n)

Fin n is a type with exactly n members. It is not possible to use Fin to define a
type with no members (Fin 0), because the successor of the (implicit) argument
n is used as the type argument. Since n is a natural number, Fin 1 is the type
with only one member: zero {0}. The suc constructor adds a given member of
Fin n to the members of Fin (suc n). Therefore, Fin 2 can only have two members:
zero {1} and suc {1} (zero {0}).

The Fin n type is very useful to limit indices for lookups in structures of size
n, for example vectors.

67

Appendix B

Example datatype encoding

This appendix contains the full code for the example used in Chapter 5. It lists
the codes used to encode the family and functions created using the interpreta-
tion functions from Chapter 4.

B.1 Family

The family consists of two mutually-recursive datatypes.

mutual
data Expr : Set where

add : Expr→ Term→ Expr
one : Expr

data Term : Set where
mul : Term→ Expr→ Term
neg : Term→ Term
two : Term

B.2 Codes

We open the Codes module parameterized with 2 (the number of datatypes in
the family we want to encode) and define the type indices and encodings for
the constructors, types and the family.

open Codes 2

B.2.1 Type indices

exprIx : TypeIx
exprIx = zero

termIx : TypeIx
termIx = suc zero

68

Example datatype encoding B.3 Interpretation

B.2.2 Constructor encodings

‘add’ : Con
‘add’ = exprIx :: termIx :: []

‘one’ : Con
‘one’ = []

‘neg’ : Con
‘neg’ = termIx :: []

‘mul’ : Con
‘mul’ = termIx :: exprIx :: []

‘two’ : Con
‘two’ = []

B.2.3 Type encodings

‘expr’ : Type
‘expr’ = ‘add’ :: ‘one’ :: []

‘term’ : Type
‘term’ = ‘mul’ :: ‘neg’ :: ‘two’ :: []

B.2.4 Family encoding

‘example’ : Fam
‘example’ = ‘expr’ :: ‘term’ :: []

B.3 Interpretation

We open the Interpretation module with the same natural number, 2, as the Codes
module. We define the types and constructor functions for our interpreted
codes, isomorphic to the constructors of the datatypes we encoded.

open Interpretation 2

B.3.1 Types

Exprµ : Set
Exprµ = µ ‘example’ exprIx

Termµ : Set
Termµ = µ ‘example’ termIx

69

Example datatype encoding B.3 Interpretation

B.3.2 Constructor indices

Using a simple helper function to construct the type from the type index, we
create the constructor indices with readable names.

ConIx : TypeIx→ Set
ConIx t = Fin (length (lookup t ‘example’))
addIx : ConIx exprIx
addIx = zero

oneIx : ConIx exprIx
oneIx = suc zero

mulIx : ConIx termIx
mulIx = zero

negIx : ConIx termIx
negIx = suc zero

twoIx : ConIx termIx
twoIx = suc (suc zero)

B.3.3 Constructor functions

addµ : Exprµ → Termµ → Exprµ

addµ e t = 〈 addIx , e :: t :: [] 〉
oneµ : Exprµ

oneµ = 〈 oneIx , [] 〉
mulµ : Termµ → Exprµ → Termµ

mulµ t e = 〈 mulIx , t :: e :: [] 〉
negµ : Termµ → Termµ

negµ t = 〈 negIx , t :: [] 〉
twoµ : Termµ

twoµ = 〈 twoIx , [] 〉

70

Appendix C

Haskell example: JSON

We use a JSON [11] library from Hackage to provide the datatypes for the
abstract syntax of JSON data.

import Text.JSON
import Text.JSON.String

Using the universe defined in Section 9.1 we define all necessary datatypes
and functions to be able to use the Haskell implementation of diff and patch from
Chapter 9.

C.1 Family GADT

data JSONFam :: ∗ → ∗ → ∗where
‘Bool’ :: Bool → JSONFam Bool Nil
‘Rational’ :: Rational→ JSONFam Rational Nil
‘String’ :: String → JSONFam String Nil

‘[]’ :: JSONFam [JSValue] Nil
‘(:)’ :: JSONFam [JSValue] (Cons JSValue (Cons [JSValue] Nil))
‘[](,)’ :: JSONFam [(String, JSValue)] Nil
‘(:)(,)’ :: JSONFam [(String, JSValue)]

(Cons (String, JSValue)
(Cons [(String, JSValue)] Nil))

(,) :: JSONFam (String, JSValue)
(Cons String (Cons JSValue Nil))

‘JSONString’ :: JSString→ JSONFam JSString Nil
‘JSNull’ :: JSONFam JSValue Nil
‘JSBool’ :: JSONFam JSValue (Cons Bool Nil)
‘JSRational’ :: JSONFam JSValue (Cons Bool (Cons Rational Nil))
‘JSString’ :: JSONFam JSValue (Cons JSString Nil)
‘JSArray’ :: JSONFam JSValue (Cons [JSValue] Nil)
‘JSObject’ :: JSONFam JSValue (Cons (JSObject JSValue) Nil)
‘JSONObject’ :: JSONFam (JSObject JSValue)

(Cons [(String, JSValue)] Nil)

71

Haskell example: JSON C.2 Family instance

C.2 Family instance

instance Family JSONFam where
decEq (‘Bool’ x) (‘Bool’ y) | x == y = Just (Refl, Refl)

| otherwise = Nothing
decEq (‘Rational’ x) (‘Rational’ y) | x == y = Just (Refl, Refl)

| otherwise = Nothing
decEq (‘String’ x) (‘String’ y) | x == y = Just (Refl, Refl)

| otherwise = Nothing
decEq ‘[]’ ‘[]’ = Just (Refl, Refl)
decEq ‘(:)’ ‘(:)’ = Just (Refl, Refl)
decEq ‘[](,)’ ‘[](,)’ = Just (Refl, Refl)
decEq ‘(:)(,)’ ‘(:)(,)’ = Just (Refl, Refl)
decEq (,) (,) = Just (Refl, Refl)
decEq (‘JSONString’ x) (‘JSONString’ y) | x == y = Just (Refl, Refl)

| otherwise = Nothing
decEq ‘JSNull’ ‘JSNull’ = Just (Refl, Refl)
decEq ‘JSBool’ ‘JSBool’ = Just (Refl, Refl)
decEq ‘JSRational’ ‘JSRational’ = Just (Refl, Refl)
decEq ‘JSString’ ‘JSString’ = Just (Refl, Refl)
decEq ‘JSArray’ ‘JSArray’ = Just (Refl, Refl)
decEq ‘JSObject’ ‘JSObject’ = Just (Refl, Refl)
decEq ‘JSONObject’ ‘JSONObject’ = Just (Refl, Refl)
decEq _ _ = Nothing

fields (‘Bool’ _) _ = Just Nil
fields (‘Rational’ _) _ = Just Nil
fields (‘String’ _) _ = Just Nil
fields ‘[]’ [] = Just Nil
fields ‘(:)’ (x : xs) = Just (Cons x (Cons xs Nil))
fields ‘[](,)’ [] = Just Nil
fields ‘(:)(,)’ (x : xs) = Just (Cons x (Cons xs Nil))
fields (,) (x, y) = Just (Cons x (Cons y Nil))
fields (‘JSONString’ _) _ = Just Nil
fields ‘JSNull’ JSNull = Just Nil
fields ‘JSBool’ (JSBool x) = Just (Cons x Nil)
fields ‘JSRational’ (JSRational x y) = Just (Cons x (Cons y Nil))
fields ‘JSString’ (JSString x) = Just (Cons x Nil)
fields ‘JSArray’ (JSArray x) = Just (Cons x Nil)
fields ‘JSObject’ (JSObject x) = Just (Cons x Nil)
fields ‘JSONObject’ x = Just (Cons (fromJSObject x)

Nil)
fields _ _ = Nothing

apply (‘Bool’ x) Nil = x
apply (‘Rational’ x) Nil = x
apply (‘String’ x) Nil = x
apply ‘[]’ Nil = []
apply ‘(:)’ (Cons x (Cons xs Nil)) = x : xs
apply ‘[](,)’ Nil = []
apply ‘(:)(,)’ (Cons x (Cons xs Nil)) = x : xs

72

Haskell example: JSON C.3 Type instances

apply (,) (Cons x (Cons y Nil)) = (x, y)
apply (‘JSONString’ x) Nil = x
apply ‘JSNull’ Nil = JSNull
apply ‘JSBool’ (Cons x Nil) = JSBool x
apply ‘JSRational’ (Cons x (Cons y Nil)) = JSRational x y
apply ‘JSString’ (Cons x Nil) = JSString x
apply ‘JSArray’ (Cons x Nil) = JSArray x
apply ‘JSObject’ (Cons x Nil) = JSObject x
apply ‘JSONObject’ (Cons x Nil) = toJSObject x

string (‘Bool’ x) = show x
string (‘Rational’ x) = show x
string (‘String’ x) = show x
string ‘[]’ = "[]"
string ‘(:)’ = "(:)"
string ‘[](,)’ = "[]"
string ‘(:)(,)’ = "(:)"
string (,) = "(,)"
string (‘JSONString’ x) = show x
string ‘JSNull’ = "JSNull"
string ‘JSBool’ = "JSBool"
string ‘JSRational’ = "JSRational"
string ‘JSString’ = "JSString"
string ‘JSArray’ = "JSArray"
string ‘JSObject’ = "JSObject"
string ‘JSONObject’ = "JSONObject"

C.3 Type instances

instance Type JSONFam Bool where
constructors = [Abstr ‘Bool’]

instance Type JSONFam Rational where
constructors = [Abstr ‘Rational’]

instance Type JSONFam String where
constructors = [Abstr ‘String’]

instance Type JSONFam [JSValue] where
constructors = [Concr ‘[]’, Concr ‘(:)’]

instance Type JSONFam [(String, JSValue)] where
constructors = [Concr ‘[](,)’, Concr ‘(:)(,)’]

instance Type JSONFam (String, JSValue) where
constructors = [Concr (,)]

instance Type JSONFam JSString where
constructors = [Abstr ‘JSONString’]

instance Type JSONFam JSValue where
constructors = [Concr ‘JSNull’, Concr ‘JSBool’, Concr ‘JSString’

, Concr ‘JSArray’, Concr ‘JSObject’]

73

Haskell example: JSON C.4 Example

instance Type JSONFam (JSObject JSValue) where
constructors = [Concr ‘JSONObject’]

C.4 Example

As an example, we look at the following two JSON files.

["foo",
["bar",

"baz"]]

["foo",
"bar",
"baz"]

Using UNIX’s diff command to find the difference between the two files,
we get the following output:

@@ -1,3 +1,3 @@
["foo",

- ["bar",
- "baz"]]
+ "bar",
+ "baz"]

To use the type-safe generic diffing, we parse the JSON files and get the
following output for the source (left) file

JSArray [JSString (JSONString { fromJSString = "foo"}),
JSArray [JSString (JSONString { fromJSString = "bar"}),

JSString (JSONString { fromJSString = "baz"})]]

and the target (right) file.

JSArray [JSString (JSONString { fromJSString = "foo"}),
JSString (JSONString { fromJSString = "bar"}),
JSString (JSONString { fromJSString = "baz"})]

The result of the diff (or actually, a diffT and a getDiff) is a value equal to the
following edit script:

Cpy ‘JSArray’
$ Cpy ‘(:)’
$ Cpy ‘JSString’
$ Cpy (‘JSONString’ $ toJSString "foo")
$ Cpy ‘(:)’
$ Del ‘JSArray’
$ Del ‘(:)’
$ Cpy ‘JSString’
$ Cpy (‘JSONString’ $ toJSString "bar")
$ Cpy ‘(:)’
$ Cpy ‘JSString’
$ Cpy (‘JSONString’ $ toJSString "baz")

74

Haskell example: JSON C.4 Example

$ Cpy ‘[]’
$ Del ‘[]’
$ End

If we run compress on the edit script above the result is the following, much
smaller, edit script:

Cpy ‘JSArray’
$ Cpy ‘(:)’
$ CpyTree
$ Cpy ‘(:)’
$ Del ‘JSArray’
$ Del ‘(:)’
$ CpyTree
$ CpyTree
$ Del ‘[]’
$ End

75

Bibliography

[1] Bazaar. URL http://bazaar-vcs.org.

[2] Darcs. URL http://darcs.net.

[3] Git. URL http://git.or.cz.

[4] Mercurial. URL http://www.selenic.com/mercurial.

[5] Subversion. URL http://subversion.tigris.org.

[6] M. Benke, P. Dybjer, and P. Jansson. Universes for Generic Programs
and Proofs in Dependent Type Theory. Nordic Journal of Computing, 10(4):
265–289, 2003.

[7] L. Bergroth, H. Hakonen, and T. Raita. A Survey of Longest Common
Subsequence Algorithms. In SPIRE 2000: Proceedings of the 7th International
Symposium on String Processing and Information Retrieval, pages 39–48, 2000.

[8] P. Bille. A survey on tree edit distance and related problems. Theor. Comput.
Sci., 337(1-3):217–239, 2005.

[9] S. S. Chawathe and H. Garcia-Molina. Meaningful Change Detection in
Structured Data. In SIGMOD ’97: Proceedings of the 1997 ACM SIGMOD
international conference on Management of data, volume 26, pages 26–37, New
York, NY, USA, June 1997. ACM Press.

[10] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change
Detection in Hierarchically Structured Information. In SIGMOD ’96: Pro-
ceedings of the 1996 ACM SIGMOD international conference on Management
of data, volume 25, pages 493–504, New York, NY, USA, June 1996. ACM
Press.

[11] D. Crockford. The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627, July 2006.

[12] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt.
Combinators for bidirectional tree transformations: A linguistic approach
to the view-update problem. ACM Transactions on Programming Languages
and Systems, 29(3):17, May 2007. Preliminary version presented at the
Workshop on Programming Language Technologies for XML (PLAN-X), 2004;
extended abstract presented at Principles of Programming Languages (POPL),
2005.

76

http://bazaar-vcs.org
http://darcs.net
http://git.or.cz
http://www.selenic.com/mercurial
http://subversion.tigris.org

Bibliography Bibliography

[13] J. Gibbons. Datatype-Generic Programming. In R. Backhouse, J. Gibbons,
R. Hinze, and J. Jeuring, editors, Datatype-Generic Programming, pages 1–71.
Springer Berlin/Heidelberg, 2007.

[14] D. S. Hirschberg. The longest common subsequence problem. PhD thesis,
Princeton, NJ, USA, 1975.

[15] S. Holdermans, J. Jeuring, A. Löh, and A. Rodriguez. Generic Views
on Data Types. In T. Uustalu, editor, MPC 2006: Proceedings of the 8th
International Conference on the Mathematics of Program Construction, pages
209–234. July 2006.

[16] P. N. Klein. Computing the Edit-Distance Between Unrooted Ordered Trees.
In ESA ’98: Proceedings of the 6th Annual European Symposium on Algorithms,
pages 91–102. Springer-Verlag, London, UK, 1998.

[17] A. Lozano and G. Valiente. On the Maximum Common Embedded Subtree
Problem for Ordered Trees. In In C. Iliopoulos and T Lecroq, editors, String
Algorithmics, chapter 7. King’s College London Publications, 2004.

[18] D. Michie. "memo" functions and machine learning. Nature, 218(5136):
19–22, April 1968.

[19] P. Morris. Constructing Universes for Generic Programming. PhD thesis, The
University of Nottingham, November 2007.

[20] U. Norell. Dependently typed programming in agda. URL http://www.
cs.chalmers.se/~{}ulfn/darcs/AFP08/LectureNotes/AgdaIntro.pdf.

[21] B. C. D. S. Oliveira, R. Hinze, and A. Löh. Extensible and Modular Generics
for the Masses. In H. Nilsson, editor, Trends in Functional Programming,
volume 7 of Trends in Functional Programming, pages 199–216. Intellect,
2006.

[22] N. Oury and W. Swierstra. The Power of Pi. In ICFP ’08: Proceeding of
the 13th ACM SIGPLAN international conference on Functional programming,
pages 39–50, New York, NY, USA, 2008. ACM.

[23] L. Peters. Change Detection in XML Trees: a Survey. In 3rd Twente Stu-
dent Conference on IT. Faculty of Electrical Engineering, Mathematics, and
Computer Science, University of Twente, June 2005.

[24] S. L. Peyton Jones, J. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Bur-
ton, J. Fasel, K. Hammond, R. Hinze, P. Hudak, T. Johnsson, M. Jones,
J. Launchbury, E. Meijer, J. Peterson, A. Reid, C. Runciman, and P. Wadler.
Haskell 98: A non-strict, purely functional language. Technical report, feb
1999. URL http://www.haskell.org/definition/.

[25] D. Piponi. The Antidiagonal, September 2007. URL http://blog.sigfpe.
com/2007/09/type-of-distinct-pairs.html.

[26] D. Piponi. Tries and their Derivatives, September 2007. URL http://blog.
sigfpe.com/2007/09/tries-and-their-derivatives_08.html.

77

http://www.cs.chalmers.se/~{}ulfn/darcs/AFP08/LectureNotes/AgdaIntro.pdf
http://www.cs.chalmers.se/~{}ulfn/darcs/AFP08/LectureNotes/AgdaIntro.pdf
http://www.haskell.org/definition/
http://blog.sigfpe.com/2007/09/type-of-distinct-pairs.html
http://blog.sigfpe.com/2007/09/type-of-distinct-pairs.html
http://blog.sigfpe.com/2007/09/tries-and-their-derivatives_08.html
http://blog.sigfpe.com/2007/09/tries-and-their-derivatives_08.html

Bibliography Bibliography

[27] A. Rodriguez, S. Holdermans, A. Löh, and J. Jeuring. Generic programming
with fixed points for mutually recursive datatypes. In Accepted to ICFP
2009, 2009.

[28] S. Selkow. The tree-to-tree editing problem. Information Processing Letters, 6
(6):184–186, December 1977.

[29] T. Sheard and S. P. Jones. Template Meta-programming for Haskell. SIG-
PLAN Not., 37(12):60–75, December 2002.

[30] S. Tieleman. Formalisation of version control with an emphasis on tree-
structured data. Master’s thesis, Universiteit Utrecht, August 2006.

[31] P. Wadler. Views: A way for pattern matching to cohabit with data ab-
straction. In POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 307–313. ACM
Press, 1987. ISBN 0897912152.

[32] W. Yang. Identifying Syntactic Differences Between Two Programs. Soft-
ware: Practice and Experience, 21(7):739–755, 1991.

[33] K. Zhang and D. Shasha. Simple Fast Algorithms for the Editing Distance
between Trees and Related Problems. SIAM Journal on Computing, 18(6):
1245–1262, 1989.

78

	1 Introduction
	1.1 Motivation
	1.2 Approach
	1.3 Overview
	1.4 Contributions

	2 Lists
	2.1 Longest common subsequence
	2.2 Edit script
	2.3 Diffing
	2.4 Patching
	2.5 Discussion

	3 Trees
	3.1 Maximum Common Embedded Subtree
	3.2 Edit script
	3.2.1 Datatype
	3.2.2 Stack
	3.2.3 Example

	3.3 Diffing
	3.4 Patching
	3.5 Discussion

	4 Universe
	4.1 Encoding
	4.2 Interpretation
	4.2.1 Environments
	4.2.2 Interpretation of families
	4.2.3 Interpretation module

	4.3 Discussion

	5 Families
	5.1 Example
	5.2 Edit script
	5.3 Patching
	5.3.1 Inserting
	5.3.2 Deleting

	5.4 Diffing
	5.5 Discussion

	6 Memoization
	6.1 Lists
	6.2 Trees
	6.2.1 Table datatype
	6.2.2 Diffing

	6.3 Discussion

	7 Extension: Constants
	7.1 Codes
	7.2 Interpretation
	7.3 Edit script
	7.4 Patching
	7.5 Diffing
	7.6 Discussion

	8 Extension: Compression
	8.1 Example
	8.2 Edit Script
	8.3 Compressing
	8.4 Patching and diffing
	8.5 Discussion

	9 Haskell implementation
	9.1 Universe
	9.2 Edit script
	9.3 Patching
	9.4 Diffing
	9.5 Compression
	9.6 Memoization
	9.6.1 Table datatype
	9.6.2 Diffing

	9.7 Discussion

	10 Conclusion
	10.1 Related and future work
	10.2 Acknowledgements

	A Agda syntax for Haskellites
	A.1 UTF-8
	A.2 Colons
	A.3 Implicit arguments
	A.4 Kinds and named type arguments
	A.5 Underscores: infix, mixfix
	A.6 Constructors
	A.7 Dependent types
	A.8 with syntax
	A.8.1 ...

	A.9 Fin

	B Example datatype encoding
	B.1 Family
	B.2 Codes
	B.2.1 Type indices
	B.2.2 Constructor encodings
	B.2.3 Type encodings
	B.2.4 Family encoding

	B.3 Interpretation
	B.3.1 Types
	B.3.2 Constructor indices
	B.3.3 Constructor functions

	C Haskell example: JSON
	C.1 Family GADT
	C.2 Family instance
	C.3 Type instances
	C.4 Example

	Bibliography

